Pregunta
Let \( \mathbf{u}(t)=7 t^{3} \mathbf{i}+\left(t^{2}-7\right) \mathbf{j}-3 \mathbf{k} \) and \( \mathbf{v}(t)=e^{t} \mathbf{i}+3 e^{-t} \mathbf{j}-e^{3 t} \mathbf{k} \). Compute the derivative of the following function. \( \mathbf{u}(t) \cdot \mathbf{v}(t) \) Select the correct choice below and fill in the answer box(es) to complete your choice. A. The derivative is the vector-valued function B. The derivative is the scalar function
Ask by Warner Sanders. in the United States
Feb 18,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The derivative of \( \mathbf{u}(t) \cdot \mathbf{v}(t) \) is a scalar function.
**Final Answer**:
B. The derivative is the scalar function.
Solución
To compute the derivative of the function \( \mathbf{u}(t) \cdot \mathbf{v}(t) \), we first need to find the dot product of the two vector-valued functions \( \mathbf{u}(t) \) and \( \mathbf{v}(t) \).
1. **Calculate the dot product \( \mathbf{u}(t) \cdot \mathbf{v}(t) \)**:
\[
\mathbf{u}(t) = 7 t^{3} \mathbf{i} + (t^{2} - 7) \mathbf{j} - 3 \mathbf{k}
\]
\[
\mathbf{v}(t) = e^{t} \mathbf{i} + 3 e^{-t} \mathbf{j} - e^{3t} \mathbf{k}
\]
The dot product is calculated as follows:
\[
\mathbf{u}(t) \cdot \mathbf{v}(t) = (7 t^{3})(e^{t}) + ((t^{2} - 7)(3 e^{-t})) + (-3)(-e^{3t})
\]
Simplifying this gives:
\[
\mathbf{u}(t) \cdot \mathbf{v}(t) = 7 t^{3} e^{t} + 3(t^{2} - 7)e^{-t} + 3 e^{3t}
\]
2. **Now, compute the derivative of the dot product**:
We will differentiate the expression \( 7 t^{3} e^{t} + 3(t^{2} - 7)e^{-t} + 3 e^{3t} \).
Using the product rule and chain rule, we differentiate each term:
- For \( 7 t^{3} e^{t} \):
\[
\frac{d}{dt}(7 t^{3} e^{t}) = 7 \left(3 t^{2} e^{t} + t^{3} e^{t}\right) = 7 e^{t}(3 t^{2} + t^{3})
\]
- For \( 3(t^{2} - 7)e^{-t} \):
\[
\frac{d}{dt}(3(t^{2} - 7)e^{-t}) = 3 \left(2t e^{-t} - (t^{2} - 7)e^{-t}\right) = 3 e^{-t}(2t - (t^{2} - 7))
\]
- For \( 3 e^{3t} \):
\[
\frac{d}{dt}(3 e^{3t}) = 9 e^{3t}
\]
3. **Combine the derivatives**:
Now we combine all the derivatives:
\[
\frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = 7 e^{t}(3 t^{2} + t^{3}) + 3 e^{-t}(2t - (t^{2} - 7)) + 9 e^{3t}
\]
Thus, the derivative \( \frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) \) is a scalar function because the dot product of two vector functions results in a scalar.
**Final Answer**:
B. The derivative is the scalar function.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the derivative of the function \( \mathbf{u}(t) \cdot \mathbf{v}(t) \), we begin by calculating the dot product: \[ \mathbf{u}(t) \cdot \mathbf{v}(t) = (7t^3)(e^t) + (t^2 - 7)(3e^{-t}) + (-3)(-e^{3t}) \] This results in a scalar function. Taking the derivative will also yield a scalar function since the derivative of a scalar is still a scalar. Therefore, the correct choice is: B. The derivative is the scalar function.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium