Pregunta
upstudy study bank question image url

Let \( \mathbf{u}(t)=7 t^{3} \mathbf{i}+\left(t^{2}-7\right) \mathbf{j}-3 \mathbf{k} \) and \( \mathbf{v}(t)=e^{t} \mathbf{i}+3 e^{-t} \mathbf{j}-e^{3 t} \mathbf{k} \). Compute the derivative of the following function. \( \mathbf{u}(t) \cdot \mathbf{v}(t) \) Select the correct choice below and fill in the answer box(es) to complete your choice. A. The derivative is the vector-valued function B. The derivative is the scalar function

Ask by Warner Sanders. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( \mathbf{u}(t) \cdot \mathbf{v}(t) \) is a scalar function. **Final Answer**: B. The derivative is the scalar function.

Solución

To compute the derivative of the function \( \mathbf{u}(t) \cdot \mathbf{v}(t) \), we first need to find the dot product of the two vector-valued functions \( \mathbf{u}(t) \) and \( \mathbf{v}(t) \). 1. **Calculate the dot product \( \mathbf{u}(t) \cdot \mathbf{v}(t) \)**: \[ \mathbf{u}(t) = 7 t^{3} \mathbf{i} + (t^{2} - 7) \mathbf{j} - 3 \mathbf{k} \] \[ \mathbf{v}(t) = e^{t} \mathbf{i} + 3 e^{-t} \mathbf{j} - e^{3t} \mathbf{k} \] The dot product is calculated as follows: \[ \mathbf{u}(t) \cdot \mathbf{v}(t) = (7 t^{3})(e^{t}) + ((t^{2} - 7)(3 e^{-t})) + (-3)(-e^{3t}) \] Simplifying this gives: \[ \mathbf{u}(t) \cdot \mathbf{v}(t) = 7 t^{3} e^{t} + 3(t^{2} - 7)e^{-t} + 3 e^{3t} \] 2. **Now, compute the derivative of the dot product**: We will differentiate the expression \( 7 t^{3} e^{t} + 3(t^{2} - 7)e^{-t} + 3 e^{3t} \). Using the product rule and chain rule, we differentiate each term: - For \( 7 t^{3} e^{t} \): \[ \frac{d}{dt}(7 t^{3} e^{t}) = 7 \left(3 t^{2} e^{t} + t^{3} e^{t}\right) = 7 e^{t}(3 t^{2} + t^{3}) \] - For \( 3(t^{2} - 7)e^{-t} \): \[ \frac{d}{dt}(3(t^{2} - 7)e^{-t}) = 3 \left(2t e^{-t} - (t^{2} - 7)e^{-t}\right) = 3 e^{-t}(2t - (t^{2} - 7)) \] - For \( 3 e^{3t} \): \[ \frac{d}{dt}(3 e^{3t}) = 9 e^{3t} \] 3. **Combine the derivatives**: Now we combine all the derivatives: \[ \frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = 7 e^{t}(3 t^{2} + t^{3}) + 3 e^{-t}(2t - (t^{2} - 7)) + 9 e^{3t} \] Thus, the derivative \( \frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) \) is a scalar function because the dot product of two vector functions results in a scalar. **Final Answer**: B. The derivative is the scalar function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the derivative of the function \( \mathbf{u}(t) \cdot \mathbf{v}(t) \), we begin by calculating the dot product: \[ \mathbf{u}(t) \cdot \mathbf{v}(t) = (7t^3)(e^t) + (t^2 - 7)(3e^{-t}) + (-3)(-e^{3t}) \] This results in a scalar function. Taking the derivative will also yield a scalar function since the derivative of a scalar is still a scalar. Therefore, the correct choice is: B. The derivative is the scalar function.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad