Pregunta
1) Write the expression in terms of sine and cosine, then simplify : \( \sin x \cot x= \) a) \( \frac{\sin ^{2} x}{\cos x} \) b) \( \sin x \cos x \) c) \( \cos x \) d) \( \tan x \)
Ask by Brooks Elliott. in Puerto Rico
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified expression is \( \cos x \).
Solución
To simplify the expression \( \sin x \cot x \), we start by recalling the definition of cotangent:
\[
\cot x = \frac{\cos x}{\sin x}
\]
Now, substituting this definition into the expression:
\[
\sin x \cot x = \sin x \cdot \frac{\cos x}{\sin x}
\]
The \( \sin x \) in the numerator and denominator cancels out (assuming \( \sin x \neq 0 \)):
\[
\sin x \cot x = \cos x
\]
Thus, the simplified expression is:
\[
\sin x \cot x = \cos x
\]
The correct answer is:
c) \( \cos x \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To express \( \sin x \cot x \) in terms of sine and cosine, we start with the definition of cotangent: \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the expression: \[ \sin x \cot x = \sin x \cdot \frac{\cos x}{\sin x} = \cos x \] So, the simplified expression is \( \cos x \). The correct answer is: c) \( \cos x \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium