Pregunta
upstudy study bank question image url

Write the equation of the parabola that passes through the points \( (-3,0),(-2,-60) \), and \( (4,0) \). Write your answer in the form \( \mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{p})(\mathrm{x}-\mathrm{q}) \), where \( \mathrm{a}, \mathrm{p} \), and q are integers, decimals, or simplified fractions. \begin{tabular}{|ll}\hline\( \square \) & \( (\square) \) \\ \hline\end{tabular}

Ask by Dawson Fernandez. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the parabola is \( y = 10(x + 3)(x - 4) \).

Solución

To find the equation of the parabola that passes through the points \((-3,0)\), \((-2,-60)\), and \((4,0)\), we can use the fact that the parabola can be expressed in the form: \[ y = a(x - p)(x - q) \] where \(p\) and \(q\) are the x-coordinates of the roots (the points where the parabola intersects the x-axis). From the given points, we can see that the roots are \(-3\) and \(4\) since both points yield \(y = 0\). Thus, we can write: \[ y = a(x + 3)(x - 4) \] Next, we need to determine the value of \(a\). We can use the third point \((-2, -60)\) to find \(a\). Substituting \(x = -2\) and \(y = -60\) into the equation gives: \[ -60 = a(-2 + 3)(-2 - 4) \] This simplifies to: \[ -60 = a(1)(-6) \] So we have: \[ -60 = -6a \] Now, we can solve for \(a\): \[ a = \frac{-60}{-6} = 10 \] Now we can substitute \(a\) back into the equation of the parabola: \[ y = 10(x + 3)(x - 4) \] Thus, the equation of the parabola in the required form is: \[ \boxed{y = 10(x + 3)(x - 4)} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the parabola that passes through the points \( (-3,0), (-2,-60) \), and \( (4,0) \), we first recognize that since the points \( (-3,0) \) and \( (4,0) \) are both on the x-axis, they are the roots of the parabola. This allows us to express the equation in the form \( y = a(x + 3)(x - 4) \). Next, we need to determine the value of \( a \). To do this, we can use the third point \( (-2,-60) \): \[ -60 = a(-2 + 3)(-2 - 4) \] \[ -60 = a(1)(-6) \] \[ -60 = -6a \] Dividing both sides by -6, we find: \[ a = 10 \] Now, substituting back \( a \) into our equation gives: \[ y = 10(x + 3)(x - 4) \] After confirming the calculations, the final answer is: \[ \boxed{y = 10(x + 3)(x - 4)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad