1. If \( \alpha \) is a root of the equation \( 2 x(2 x+1)=1 \), find the other root.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
First, let's solve the equation \( 2 x(2 x + 1) = 1 \). Rearranging gives us: \[ 2x(2x + 1) - 1 = 0, \] which simplifies to: \[ 4x^2 + 2x - 1 = 0. \] Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = 2 \), and \( c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 2^2 - 4(4)(-1) = 4 + 16 = 20. \] Now substituting into the quadratic formula: \[ x = \frac{-2 \pm \sqrt{20}}{2(4)} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4}. \] Thus, the roots are \( \alpha = \frac{-1 + \sqrt{5}}{4} \) and \( \beta = \frac{-1 - \sqrt{5}}{4} \). Therefore, the other root is \[ \frac{-1 - \sqrt{5}}{4}. \]
