Pregunta
upstudy study bank question image url

Solve for \( \theta \) if : \( 2 \cos ^{2} 2 \theta+\cos 2 \theta-1=0, \theta \in\left[-180^{\circ} ; 180^{\circ}\right] \)

Ask by Phillips Hampton. in South Africa
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions for \( \theta \) are \( 30^\circ, -30^\circ, -150^\circ, 90^\circ, -90^\circ \).

Solución

To solve the equation \( 2 \cos^2 2\theta + \cos 2\theta - 1 = 0 \), we can start by letting \( x = \cos 2\theta \). This transforms our equation into a standard quadratic form: \[ 2x^2 + x - 1 = 0 \] Next, we can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 2 \), \( b = 1 \), and \( c = -1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ x = \frac{-1 \pm \sqrt{1 + 8}}{4} \] \[ x = \frac{-1 \pm \sqrt{9}}{4} \] \[ x = \frac{-1 \pm 3}{4} \] This gives us two possible solutions for \( x \): 1. \( x = \frac{2}{4} = \frac{1}{2} \) 2. \( x = \frac{-4}{4} = -1 \) Now we will solve for \( \theta \) using these values of \( x \). ### Case 1: \( \cos 2\theta = \frac{1}{2} \) The general solutions for \( \cos 2\theta = \frac{1}{2} \) are: \[ 2\theta = 60^\circ + 360^\circ k \quad \text{or} \quad 2\theta = -60^\circ + 360^\circ k \] Dividing by 2 gives: \[ \theta = 30^\circ + 180^\circ k \quad \text{or} \quad \theta = -30^\circ + 180^\circ k \] For \( k = 0 \): - \( \theta = 30^\circ \) - \( \theta = -30^\circ \) For \( k = 1 \): - \( \theta = 210^\circ \) (not in the interval) - \( \theta = 150^\circ \) (not in the interval) For \( k = -1 \): - \( \theta = -150^\circ \) (in the interval) - \( \theta = -210^\circ \) (not in the interval) Thus, from this case, we have: \[ \theta = 30^\circ, -30^\circ, -150^\circ \] ### Case 2: \( \cos 2\theta = -1 \) The general solution for \( \cos 2\theta = -1 \) is: \[ 2\theta = 180^\circ + 360^\circ k \] Dividing by 2 gives: \[ \theta = 90^\circ + 180^\circ k \] For \( k = 0 \): - \( \theta = 90^\circ \) (in the interval) For \( k = -1 \): - \( \theta = -90^\circ \) (in the interval) For \( k = 1 \): - \( \theta = 270^\circ \) (not in the interval) Thus, from this case, we have: \[ \theta = 90^\circ, -90^\circ \] ### Final Solutions Combining all the solutions from both cases, we have: \[ \theta = 30^\circ, -30^\circ, -150^\circ, 90^\circ, -90^\circ \] Thus, the final solutions for \( \theta \) in the interval \( [-180^\circ, 180^\circ] \) are: \[ \boxed{30^\circ, -30^\circ, -150^\circ, 90^\circ, -90^\circ} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's start solving the equation \( 2 \cos^2 2\theta + \cos 2\theta - 1 = 0 \). This is a quadratic equation in terms of \( x = \cos 2\theta \): \[ 2x^2 + x - 1 = 0 \] We can apply the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = 1 \), and \( c = -1 \). Plugging these values into the formula gives: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ x = \frac{-1 \pm \sqrt{1 + 8}}{4} \] \[ x = \frac{-1 \pm \sqrt{9}}{4} \] \[ x = \frac{-1 \pm 3}{4} \] This provides two solutions: 1. \( x = \frac{2}{4} = \frac{1}{2} \) 2. \( x = \frac{-4}{4} = -1 \) Next, we need to solve for \( 2\theta \): 1. For \( \cos 2\theta = \frac{1}{2} \): \[ 2\theta = 60^\circ + k \cdot 360^\circ \quad \text{or} \quad 2\theta = -60^\circ + k \cdot 360^\circ \] This gives: \[ 2\theta = 60^\circ \quad \Rightarrow \quad \theta = 30^\circ \] \[ 2\theta = -60^\circ \quad \Rightarrow \quad \theta = -30^\circ \] 2. For \( \cos 2\theta = -1 \): \[ 2\theta = 180^\circ + k \cdot 360^\circ \] This gives: \[ 2\theta = 180^\circ \quad \Rightarrow \quad \theta = 90^\circ \] Now, considering \( \theta \in [-180^\circ, 180^\circ] \), the valid solutions for \( \theta \) are: - \( 30^\circ \) - \( -30^\circ \) - \( 90^\circ \) So, the final solutions for \( \theta \) are: \[ \theta = 30^\circ, -30^\circ, 90^\circ \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad