Solve for \( \theta \) if : \( 2 \cos ^{2} 2 \theta+\cos 2 \theta-1=0, \theta \in\left[-180^{\circ} ; 180^{\circ}\right] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's start solving the equation \( 2 \cos^2 2\theta + \cos 2\theta - 1 = 0 \). This is a quadratic equation in terms of \( x = \cos 2\theta \): \[ 2x^2 + x - 1 = 0 \] We can apply the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = 1 \), and \( c = -1 \). Plugging these values into the formula gives: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ x = \frac{-1 \pm \sqrt{1 + 8}}{4} \] \[ x = \frac{-1 \pm \sqrt{9}}{4} \] \[ x = \frac{-1 \pm 3}{4} \] This provides two solutions: 1. \( x = \frac{2}{4} = \frac{1}{2} \) 2. \( x = \frac{-4}{4} = -1 \) Next, we need to solve for \( 2\theta \): 1. For \( \cos 2\theta = \frac{1}{2} \): \[ 2\theta = 60^\circ + k \cdot 360^\circ \quad \text{or} \quad 2\theta = -60^\circ + k \cdot 360^\circ \] This gives: \[ 2\theta = 60^\circ \quad \Rightarrow \quad \theta = 30^\circ \] \[ 2\theta = -60^\circ \quad \Rightarrow \quad \theta = -30^\circ \] 2. For \( \cos 2\theta = -1 \): \[ 2\theta = 180^\circ + k \cdot 360^\circ \] This gives: \[ 2\theta = 180^\circ \quad \Rightarrow \quad \theta = 90^\circ \] Now, considering \( \theta \in [-180^\circ, 180^\circ] \), the valid solutions for \( \theta \) are: - \( 30^\circ \) - \( -30^\circ \) - \( 90^\circ \) So, the final solutions for \( \theta \) are: \[ \theta = 30^\circ, -30^\circ, 90^\circ \]
