Factor completely. \( -5 v^{2}-28 v-15 \) \( \square \square \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To factor the expression \( -5v^{2} - 28v - 15 \) completely, first, we can factor out a negative sign to make it easier: \( - (5v^{2} + 28v + 15) \). Next, we look for two numbers that multiply to \( (5)(15) = 75 \) and add up to \( 28 \). These numbers are \( 25 \) and \( 3 \). Now we rewrite the middle term: \( 5v^{2} + 25v + 3v + 15 \). Group the terms: \( (5v^{2} + 25v) + (3v + 15) \). Factoring by grouping gives: \( 5v(v + 5) + 3(v + 5) \). Now we can factor out \( (v + 5) \): \( (v + 5)(5v + 3) \). Thus, the factored form is: \(- (v + 5)(5v + 3)\).
