Pregunta
upstudy study bank question image url

A baseball catcher puts on an exhibition by catching a \( 0.15-\mathrm{kg} \) ball dropped from a helicopter at a height of 101 m . What is the speed of the ball just before it hits the catcher's glove 1.0 m above the ground? \( \left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right. \) and ignore air resistance) 1) \( 44 \mathrm{~m} / \mathrm{s} \) 2) \( 38 \mathrm{~m} / \mathrm{s} \) 3) \( 31 \mathrm{~m} / \mathrm{s} \) 4) \( 22 \mathrm{~m} / \mathrm{s} \) 5) \( 15 \mathrm{~m} / \mathrm{s} \)

Ask by Reid Bird. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The speed of the ball just before it hits the catcher's glove is approximately 44 m/s.

Solución

To solve the problem, we can use energy conservation. The initial gravitational potential energy (at the height of 101 m) will be converted into kinetic energy as the ball falls, taking into account that the ball is caught at 1.0 m above the ground. Step 1: Determine the change in height. Initial height = 101 m Final height = 1 m Change in height (Δh) = 101 m - 1 m = 100 m Step 2: Set up energy conservation. At the initial height, the ball has potential energy (PE) and negligible kinetic energy. At the final height (just before being caught), the ball has kinetic energy (KE) and reduced potential energy. However, an easier method is to equate the loss in potential energy to the gain in kinetic energy: m × g × Δh = ½ m v² Notice the mass m cancels out: g Δh = ½ v² Step 3: Solve for v. v² = 2 g Δh = 2 × 9.8 m/s² × 100 m = 1960 m²/s² v = √1960 ≈ 44.3 m/s Thus, the speed of the ball just before it hits the catcher's glove is approximately 44 m/s. Therefore, the correct answer is: 1) 44 m/s

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the speed of the ball just before it hits the catcher's glove, we can use the conservation of energy principle. The potential energy (PE) at the height of 101 m is converted into kinetic energy (KE) as the ball falls. The height from which the ball is dropped is 101 m, but since it is caught 1 m above the ground, the ball falls from 100 m (101 m - 1 m = 100 m). The potential energy at 100 m is given by: \[ PE = mgh \] Where: - \( m = 0.15 \, \text{kg} \) - \( g = 9.8 \, \text{m/s}^2 \) - \( h = 100 \, \text{m} \) Calculating the potential energy: \[ PE = 0.15 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 100 \, \text{m} = 147 \, \text{J} \] This potential energy will be converted entirely into kinetic energy just before the ball hits the catcher's glove: \[ KE = \frac{1}{2} mv^2 \] Setting PE equal to KE: \[ 147 \, \text{J} = \frac{1}{2} \times 0.15 \, \text{kg} \times v^2 \] Solving for \( v \): \[ 147 = 0.075 v^2 \] \[ v^2 = \frac{147}{0.075} = 1960 \] \[ v = \sqrt{1960} \approx 44.4 \, \text{m/s} \] Thus, the speed of the ball just before it hits the catcher's glove is approximately \( 44 \, \text{m/s} \). Therefore, the correct answer is: 1) \( 44 \, \text{m/s} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad