Pregunta
upstudy study bank question image url

For the given function, (a) find the slope of the tangent line to the graph at the given point; (b) find the equation of the tangent line. \( g(x)=3 \sqrt{x} \) at \( x=1 \)

Ask by Byrd Medina. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The slope of the tangent line at \( x = 1 \) is \( \frac{3}{2} \). (b) The equation of the tangent line is: \[ y = \frac{3}{2}x + \frac{3}{2} \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To find the slope of the tangent line to the graph at \( x=1 \), we first need to compute the derivative of \( g(x) = 3\sqrt{x} \). The derivative, using the power rule, is \( g'(x) = \frac{3}{2\sqrt{x}} \). Evaluating this at \( x=1 \), we get \( g'(1) = \frac{3}{2\sqrt{1}} = \frac{3}{2} \). So the slope of the tangent line at \( x=1 \) is \( \frac{3}{2} \). Next, we find the equation of the tangent line. The point on the graph at \( x=1 \) is \( g(1) = 3\sqrt{1} = 3 \). Using the point-slope form \( y - y_1 = m(x - x_1) \), where \( m = \frac{3}{2} \), \( x_1 = 1 \), and \( y_1 = 3 \), we get the equation of the tangent line as \( y - 3 = \frac{3}{2}(x - 1) \). Simplifying this gives \( y = \frac{3}{2}x + \frac{3}{2} \). Thus, the equation of the tangent line is \( y = \frac{3}{2}x + \frac{3}{2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad