Pregunta
upstudy study bank question image url

A function and a point are given. Let correspond to the direction of the directional derivative. Complete parts a. through .
(Type any angles in radians between 0 and . Type an exact answer, using as needed. Use a comma to separate answers as needed.)
What angles are associated with the direction of zero change?
(Type any angles in radians between 0 and . Type an exact answer, using as needed. Use a comma to separate answers as needed.)
c. Write the directional derivative at P as a function of ; call this function .
(Type an exact answer, using radicals as needed.)
d. Find the value of that maximizes and find the maximum value. What value of maximizes ?
(Type any angles in radians between 0 and . Type an exact answer, using as needed.)

Ask by Bowman Sanders. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The angle that maximizes is .

Solución

We start with the given function and point:
At the point , the gradient is computed by differentiating . Write
so by the chain rule,
At we have:
and thus
The directional derivative in the direction given by the unit vector
is given by
To find the value of that maximizes , recall that for any expression of the form
the maximum value is attained when the unit vector points in the direction of . In our case, we compare with:
Thus the maximum is reached when
We compute the magnitude:
The direction of the vector is given by
Since and the vector is in the fourth quadrant. The basic angle satisfying
is
Being in the fourth quadrant we have
Thus, the value of that maximizes is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the angle that maximizes , we look for the critical points by taking the derivative and setting it equal to zero. The expression will be maximized when is as large as possible relative to , which occurs when . Therefore, .
To find the maximum value of at , we substitute this back into the function :
Thus, the value of that maximizes is:

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad