Which of the following limits is equal to \( \int_{2}^{5} x^{2} d x \) (A) \[ \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{k}{n}\right)^{2} \frac{1}{n} \] (B) \[ \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{k}{n}\right)^{2} \frac{3}{n} \] (C) \( \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \frac{1}{n} \) (D) \( \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \frac{3}{n} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To evaluate which limit corresponds to the integral \( \int_{2}^{5} x^{2} d x \), we can rewrite the integral in terms of Riemann sums. The integral from 2 to 5 suggests a change of variables where \( x = 2 + \frac{3k}{n} \), covering the interval from 2 to 5 as \( k \) varies from 1 to \( n \). The width of each subinterval \( \Delta x \) approaches \( \frac{3}{n} \) as \( n \to \infty \). Hence, the correct limit corresponds to the expression that captures this behavior. The answer is option (D): \[ \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \frac{3}{n}. \] This limit approaches the area under the curve \( y = x^2 \) from 2 to 5, matching our integral perfectly!
