Pregunta
upstudy study bank question image url

For the following function, find the intervals on which the function is increasing or decreasing.

List any interval(s) on which the function is increasing. Select the correct choice and, if necessary, fill in the answer box to complete your choice.
A. The function is increasing on the interval(s)
(Type your answer in interval notation. Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers
as needed.)
B. The function is never increasing.
List any interval(s) on which the function is decreasing. Select the correct choice and, if necessary, fill in the answer box to complete your choice.
A. The function is decreasing on the interval(s)
(Type your answer in interval notation. Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers
as needed.)
B. The function is never decreasing.

Ask by Bartlett Little. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function is increasing on the intervals and . It is decreasing on the interval .

Solución

  1. Compute the derivative of the function:
  1. Solve for critical points by setting :
Divide the entire equation by 6:
Use the quadratic formula:
Thus, the critical points are:
  1. Analyze the sign of on the intervals determined by the critical points:
  • For : Choose
    Hence, is increasing on this interval.
  • For : Choose
    Hence, is decreasing on this interval.
  • For : Choose
    Hence, is increasing on this interval.
  1. Final answer in interval notation:
  • The function is increasing on the interval(s):
  • The function is decreasing on the interval(s):

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine where the function is increasing or decreasing, we need to find its critical points by taking the derivative and analyzing its sign.
First, the derivative . Setting this equal to zero helps us find the critical points:
Using the quadratic formula, , we find the values of .
After applying the formula, we find the critical points, and then test the intervals around these points to find where the derivative is positive (indicating increasing behavior) or negative (indicating decreasing behavior).
By evaluating the derivative around the critical points, we discover that:
  • The function is increasing on the interval(s): .
  • The function is decreasing on the interval(s): .
So here’s how you might fill in your answer:
A. The function is increasing on the interval(s) .
A. The function is decreasing on the interval(s) .
Now, let’s sprinkle in some extra knowledge!
The polynomial function you peeked at has a lot of character! It’s shaped like a roller coaster, creasing and dipping around its critical points. So, every time you analyze it mathematically, imagine it feels those ups and downs—like an adventure ride in the world of functions!
If you’re intrigued by more complex functions, you could dive into topics like calculus of higher-order derivatives or even explore how these principles apply to real-world scenarios like optimizing profit in business or modeling population dynamics in biology—understanding those curves can really help you navigate the twists and turns of life!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad