4. Evaluate the indefinite integral. (Use \( C \) for the constant of integration.) \[ \int \frac{\cos \left(\frac{\pi}{x^{31}}\right)}{x^{32}} d x \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To tackle the indefinite integral \[ \int \frac{\cos \left(\frac{\pi}{x^{31}}\right)}{x^{32}} dx, \] we can use substitution. Let: \[ u = \frac{\pi}{x^{31}}. \] Then, differentiating gives us: \[ du = -\frac{31\pi}{x^{32}} dx \quad \Rightarrow \quad dx = -\frac{x^{32}}{31\pi} du. \] Thus, we need to express \( x^{32} \) in terms of \( u \): \[ x = \left(\frac{\pi}{u}\right)^{\frac{1}{31}} \quad \Rightarrow \quad x^{32} = \left(\frac{\pi}{u}\right)^{\frac{32}{31}}. \] Substituting \( dx \) and \( x^{32} \) into the integral gives: \[ \int \frac{\cos(u)}{x^{32}} \left(-\frac{x^{32}}{31\pi}\right) du = -\frac{1}{31\pi} \int \cos(u) du. \] The integral of \( \cos(u) \) is \( \sin(u) + C \). Therefore: \[ -\frac{1}{31\pi} \sin(u) + C. \] Now substituting back for \( u \): \[ -\frac{1}{31\pi} \sin\left(\frac{\pi}{x^{31}}\right) + C. \] Finally, the result of the integral is: \[ \int \frac{\cos \left(\frac{\pi}{x^{31}}\right)}{x^{32}} dx = -\frac{1}{31\pi} \sin\left(\frac{\pi}{x^{31}}\right) + C. \]
preguntas relacionadas
