Determine whether the given function is linear. If the function is linear, express the function in the form \( f(x)=a x+b \). (If the functi \[ f(x)=\frac{4 x-5}{x} \] \( f(x)= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To determine if the function \( f(x) = \frac{4x - 5}{x} \) is linear, we can simplify it. By dividing both terms in the numerator by \( x \), we get: \[ f(x) = \frac{4x}{x} - \frac{5}{x} = 4 - \frac{5}{x} \] Since the term \( \frac{5}{x} \) introduces a variable in the denominator, the function is not linear. A linear function should take the form \( f(x) = ax + b \) where \( a \) and \( b \) are constants. In this case, \( f(x) \) includes a term with \( x \) in the denominator, making it a non-linear function. Therefore, \( f(x) \) cannot be expressed as \( f(x) = ax + b \).
