Pregunta
upstudy study bank question image url

Solve the equation. \( \frac{x+6}{6}=2-\frac{x+5}{5} \) What is the solution? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \} \). (Type an integer or a fraction.) B. The solution set is \( \{x \mid x \) is a real number \( \} \). C. The solution set is \( \varnothing \).

Ask by Norris Erickson. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x=0 \).

Solución

Solve the equation \( \frac{x+6}{6}=2-\frac{x+5}{5} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x+6}{6}=2-\frac{x+5}{5}\) - step1: Multiply both sides of the equation by LCD: \(\frac{x+6}{6}\times 30=\left(2-\frac{x+5}{5}\right)\times 30\) - step2: Simplify the equation: \(5x+30=30-6x\) - step3: Cancel equal terms: \(5x=-6x\) - step4: Add or subtract both sides: \(5x-\left(-6x\right)=0\) - step5: Subtract the terms: \(11x=0\) - step6: Rewrite the expression: \(x=0\) The solution to the equation \( \frac{x+6}{6}=2-\frac{x+5}{5} \) is \( x=0 \). Therefore, the correct choice is: A. The solution set is \( \{0\} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( \frac{x+6}{6}=2-\frac{x+5}{5} \), we first eliminate the fractions by multiplying both sides by 30 (the least common multiple of 6 and 5): \( 30 \cdot \frac{x+6}{6} = 30 \cdot \left(2 - \frac{x+5}{5}\right) \) This simplifies to: \( 5(x + 6) = 60 - 6(x + 5) \) Expanding both sides gives: \( 5x + 30 = 60 - 6x - 30 \) Combining like terms on the right side leads to: \( 5x + 30 = 30 - 6x \) Now, adding \( 6x \) to both sides results in: \( 5x + 6x + 30 = 30 \) Thus: \( 11x + 30 = 30 \) Subtracting 30 from both sides yields: \( 11x = 0 \) Finally, dividing both sides by 11 gives: \( x = 0 \) So the solution set is \( \{0\} \). Now, let's explore more on this topic: In the world of algebra, equations like this are foundational building blocks! Solving them often requires a good grasp of fraction manipulation, variable isolation, and basic arithmetic. Each solution you find is like unraveling a little mystery, revealing the value that satisfies the equation. For those new to solving equations, a common mistake is forgetting to apply operations to both sides of the equation equally. Always check your steps and simplify carefully! It’s great practice to verify your solution by plugging it back into the original equation to ensure both sides are equal. It’s like double-checking your homework before handing it in!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad