Solución
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\theta +20=70\)
- step1: Move the constant to the right side:
\(\theta =70-20\)
- step2: Subtract the numbers:
\(\theta =50\)
Solve the equation \( \tan(2\theta) = 5 \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\tan\left(2\theta \right)=5\)
- step1: Find the domain:
\(\tan\left(2\theta \right)=5,\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step2: Use the inverse trigonometric function:
\(2\theta =\arctan\left(5\right)\)
- step3: Add the period:
\(2\theta =\arctan\left(5\right)+k\pi ,k \in \mathbb{Z}\)
- step4: Solve the equation:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step5: Check if the solution is in the defined range:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z},\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step6: Find the intersection:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\)
Solve the equation \( \tan(2\theta) = 5 \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\tan\left(2\theta \right)=5\)
- step1: Find the domain:
\(\tan\left(2\theta \right)=5,\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step2: Use the inverse trigonometric function:
\(2\theta =\arctan\left(5\right)\)
- step3: Add the period:
\(2\theta =\arctan\left(5\right)+k\pi ,k \in \mathbb{Z}\)
- step4: Solve the equation:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step5: Check if the solution is in the defined range:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z},\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step6: Find the intersection:
\(\theta =\frac{\arctan\left(5\right)}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\)
Solve the equation \( \sin(\theta - 20^{\text{o}}) = \cos(\theta) \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\sin\left(\theta -20\right)=\cos\left(\theta \right)\)
- step1: Move the expression to the left side:
\(\sin\left(\theta -20\right)-\cos\left(\theta \right)=0\)
- step2: Transform the expression:
\(-2\sin\left(\frac{\pi +40}{4}\right)\sin\left(\frac{\pi +40-4\theta }{4}\right)=0\)
- step3: Multiply both sides:
\(-2\sin\left(\frac{\pi +40}{4}\right)\sin\left(\frac{\pi +40-4\theta }{4}\right)\left(-\frac{1}{2\sin\left(\frac{\pi +40}{4}\right)}\right)=0\times \left(-\frac{1}{2\sin\left(\frac{\pi +40}{4}\right)}\right)\)
- step4: Calculate:
\(\sin\left(\frac{\pi +40-4\theta }{4}\right)=0\times \left(-\frac{1}{2\sin\left(\frac{\pi +40}{4}\right)}\right)\)
- step5: Calculate:
\(\sin\left(\frac{\pi +40-4\theta }{4}\right)=0\)
- step6: Use the inverse trigonometric function:
\(\frac{\pi +40-4\theta }{4}=\arcsin\left(0\right)\)
- step7: Calculate:
\(\frac{\pi +40-4\theta }{4}=0\)
- step8: Add the period:
\(\frac{\pi +40-4\theta }{4}=k\pi ,k \in \mathbb{Z}\)
- step9: Solve the equation:
\(\theta =\frac{\pi +40}{4}+k\pi ,k \in \mathbb{Z}\)
Solve the equation \( \theta = \arcsin(0.35) \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\theta =\arcsin\left(0.35\right)\)
Solve the equation \( \sin^{2}(x) - \sin(x) \cos(x) = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sin^{2}\left(x\right)-\sin\left(x\right)\cos\left(x\right)=0\)
- step1: Factor the expression:
\(\sin\left(x\right)\left(\sin\left(x\right)-\cos\left(x\right)\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&\sin\left(x\right)=0\\&\sin\left(x\right)-\cos\left(x\right)=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=k\pi ,k \in \mathbb{Z}\\&x=\frac{\pi }{4}+k\pi ,k \in \mathbb{Z}\end{align}\)
- step4: Find the union:
\(x=\left\{ \begin{array}{l}k\pi \\\frac{\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( 2 \sin(x) \tan(x) - \tan(x) = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\sin\left(x\right)\tan\left(x\right)-\tan\left(x\right)=0\)
- step1: Find the domain:
\(2\sin\left(x\right)\tan\left(x\right)-\tan\left(x\right)=0,x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step2: Factor the expression:
\(\tan\left(x\right)\left(2\sin\left(x\right)-1\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&\tan\left(x\right)=0\\&2\sin\left(x\right)-1=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=k\pi ,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step5: Find the union:
\(x=\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step6: Check if the solution is in the defined range:
\(x=\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z},x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step7: Find the intersection:
\(x=\left\{ \begin{array}{l}k\pi \\\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \sin(x) \cos(x) - 3 \cos(x) = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sin\left(x\right)\cos\left(x\right)-3\cos\left(x\right)=0\)
- step1: Factor the expression:
\(\cos\left(x\right)\left(\sin\left(x\right)-3\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&\cos\left(x\right)=0\\&\sin\left(x\right)-3=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
Solve the equation \( 8 \cos(2\theta) = \frac{2}{\cos(2\theta)} \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(8\cos\left(2\theta \right)=\frac{2}{\cos\left(2\theta \right)}\)
- step1: Find the domain:
\(8\cos\left(2\theta \right)=\frac{2}{\cos\left(2\theta \right)},\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step2: Cross multiply:
\(8\cos\left(2\theta \right)\cos\left(2\theta \right)=2\)
- step3: Simplify the equation:
\(8\cos^{2}\left(2\theta \right)=2\)
- step4: Divide both sides:
\(\frac{8\cos^{2}\left(2\theta \right)}{8}=\frac{2}{8}\)
- step5: Divide the numbers:
\(\cos^{2}\left(2\theta \right)=\frac{1}{4}\)
- step6: Simplify the expression:
\(\cos\left(2\theta \right)=\pm \sqrt{\frac{1}{4}}\)
- step7: Simplify the expression:
\(\cos\left(2\theta \right)=\pm \frac{1}{2}\)
- step8: Separate into possible cases:
\(\begin{align}&\cos\left(2\theta \right)=\frac{1}{2}\\&\cos\left(2\theta \right)=-\frac{1}{2}\end{align}\)
- step9: Calculate:
\(\begin{align}&\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\\&\cos\left(2\theta \right)=-\frac{1}{2}\end{align}\)
- step10: Calculate:
\(\begin{align}&\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{3}+k\pi \\\frac{2\pi }{3}+k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step11: Find the union:
\(\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+\frac{k\pi }{2}\\\frac{\pi }{3}+\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\)
- step12: Check if the solution is in the defined range:
\(\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+\frac{k\pi }{2}\\\frac{\pi }{3}+\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z},\theta \neq \frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\)
- step13: Find the intersection:
\(\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+\frac{k\pi }{2}\\\frac{\pi }{3}+\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \theta = \frac{1}{2} \arccos(0.866) - 5^{\text{o}} \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\theta =\frac{1}{2}\arccos\left(0.866\right)-5\)
- step1: Simplify:
\(\theta =\frac{\arccos\left(0.866\right)-10}{2}\)
- step2: Simplify:
\(\theta \approx -4.738175\)
Let's solve the equations step by step.
### 1) Solve the following equations:
#### a) \( \sin \theta = 0.35 \)
To find \( \theta \):
\[
\theta = \arcsin(0.35) \approx 0.3576 \text{ radians} \approx 20.7^{\circ}
\]
#### b) \( \tan 2\theta = 5 \)
To find \( \theta \):
\[
2\theta = \arctan(5) + k\pi, \quad k \in \mathbb{Z}
\]
Thus,
\[
\theta = \frac{\arctan(5)}{2} + \frac{k\pi}{2} \approx 0.6867 + \frac{k\pi}{2}, \quad k \in \mathbb{Z}
\]
#### c) \( \cos(2\theta + 10^{\circ}) = 0.866 \)
To find \( \theta \):
\[
2\theta + 10^{\circ} = \arccos(0.866) + k \cdot 360^{\circ}, \quad k \in \mathbb{Z}
\]
Calculating \( \arccos(0.866) \):
\[
2\theta = 60^{\circ} - 10^{\circ} + k \cdot 360^{\circ} \implies 2\theta = 50^{\circ} + k \cdot 360^{\circ}
\]
Thus,
\[
\theta = 25^{\circ} + \frac{k \cdot 360^{\circ}}{2}, \quad k \in \mathbb{Z}
\]
#### d) \( \cos(x + 20^{\circ}) = \sin 70^{\circ} \)
Using the identity \( \sin 70^{\circ} = \cos 20^{\circ} \):
\[
\cos(x + 20^{\circ}) = \cos 20^{\circ}
\]
This gives:
\[
x + 20^{\circ} = 20^{\circ} + k \cdot 360^{\circ} \quad \text{or} \quad x + 20^{\circ} = -20^{\circ} + k \cdot 360^{\circ}
\]
Thus,
\[
x = k \cdot 360^{\circ} \quad \text{or} \quad x = -40^{\circ} + k \cdot 360^{\circ}, \quad k \in \mathbb{Z}
\]
### 2) Solve the following equations:
#### a) \( \sin^2 x - \sin x \cos x = 0 \)
Factoring gives:
\[
\sin x (\sin x - \cos x) = 0
\]
Thus,
\[
\sin x = 0 \quad \text{or} \quad \sin x = \cos x \implies x = k\pi \quad \text{or} \quad x = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}
\]
#### b) \( 2 \sin x \tan x - \tan x = 0 \)
Factoring gives:
\[
\tan x (2 \sin x - 1) = 0
\]
Thus,
\[
\tan x = 0 \quad \text{or} \quad 2 \sin x - 1 = 0 \implies x = k\pi \quad \text{or} \quad x = \frac{\pi}{6} + k\pi, \quad k \in \mathbb{Z}
\]
#### c) \( 8 \cos 2\theta = \frac{2}{\cos 2\theta} \)
Multiplying both sides by \( \cos 2\theta \):
\[
8 \cos^2 2\theta = 2 \implies 4 \cos^2 2\theta - 1 = 0
\]
Thus,
\[
\cos 2\theta = \pm \frac{1}{2} \implies 2\theta = 60^{\circ} + k \cdot 360^{\circ} \quad \text{or} \quad 2\theta = 120^{\circ} + k \cdot 360^{\circ}
\]
Thus,
\[
\theta = 30^{\circ} + k \cdot 180^{\circ} \quad \text{or} \quad \theta = 60^{\circ} + k \cdot 180^{\circ}, \quad k \in \mathbb{Z}
\]
#### d) \( \sin x \cos x - 3 \cos x = 0 \)
Factoring gives:
\[
\cos x (\sin x - 3) = 0
\]
Thus,
\[
\cos x = 0 \quad \text{or} \quad \sin x = 3 \quad \text{(not possible)}
\]
Thus,
\[
x = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}
\]
#### e) \( \sin(\theta - 20^{\circ}) = \cos \theta \)
Using the identity \( \sin(\theta - 20^{\circ}) = \sin(90^{\circ} - \theta) \):
\[
\theta - 20^{\circ} = 90^{\circ} - \theta + k \cdot 360^{\circ}
\]
Thus,
\[
2\theta = 110^{\circ} + k \cdot 360^{\circ} \implies \theta = 55^{\circ} + k \cdot 180^{\circ}, \quad k \in \mathbb{Z}
\]
### Summary of Results:
1. a) \( \theta \approx 20.7^{\circ} \)
b) \( \theta \approx 0.6867 + \frac{k\pi}{2} \)
c) \( \theta = 25^{\circ} + k \cdot 180^{\circ} \)
d) \( x = k \cdot 360^{\circ} \) or \( x = -40^{\circ} + k \cdot 360^{\circ} \)
2. a) \( x = k\pi \) or \( x = \frac{\pi}{4} + k\pi \)
b) \( x = k\pi \) or \( x = \frac{\pi}{6} + k\pi \)
c) \( \theta = 30^{\circ} + k \cdot 180^{\circ} \) or \( \theta = 60^{