Pregunta
upstudy study bank question image url

The blades of a windmill turn on an axis that is 30 feet from the ground. The blades are 10 feet long and complete 2 rotations every minute. Write a sine model, \( y=a \sin (b t)+k \), for the height (in feet) of the end of one blade as a function of time \( t \) (in seconds). Assume the blade is pointing to the right when \( t=0 \) and that the windmill turns counterclockwise at a constant rate. \( y=30 \sin \left(\frac{\pi}{15} t\right)+10 \) \( y=30 \sin \left(\frac{\pi}{15} t\right)+30 \) \( y=10 \sin \left(\frac{\pi}{15} t\right)+10 \) \( y=10 \sin \left(\frac{\pi}{15} t\right)+30 \)

Ask by Wang Daniel. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( y = 10 \sin\left(\frac{\pi}{15} t\right) + 30 \)

Solución

The windmill’s center (the axle) is 30 feet above the ground, and the blade’s tip travels on a circle of radius 10 feet. This tells us two things: 1. The midline (vertical shift) is k = 30. 2. The amplitude is a = 10. Since the windmill makes 2 rotations per minute, the period of one rotation is 30 seconds (60 seconds divided by 2). For a sine function of the form y = a sin(b t) + k, the period T is given by T = (2π)/b. Setting T = 30 gives:   (2π)/b = 30  ⟹  b = (2π)/30 = π/15. Now, note the initial condition: at t = 0, the blade “is pointing to the right.” That means the tip lies horizontally from the center (i.e. its height is exactly k = 30 feet) and, because the windmill turns counterclockwise, the tip is moving upward at t = 0. The sine function sin(0) is 0, and its derivative at t = 0 is positive, so no phase shift is needed. Thus, the sine model is:   y = 10 sin((π/15)t) + 30 This corresponds to the answer:   y = 10 sin((π/15)t) + 30

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the height of the end of one blade of the windmill, let’s first break down the components of the sine model \(y = a \sin(bt) + k\). The amplitude \(a\) is half the distance the blade moves vertically; thus, with a 10-foot blade, \(a = 10\). The vertical shift \(k\) is the height of the axis plus the amplitude, giving us \(k = 30 + 10 = 30\). Lastly, the factor \(b\) relates to how fast the windmill rotates, completing 2 rotations per minute or \(\frac{2\pi}{30}\) radians per second, so \(b = \frac{\pi}{15}\). So the model properly reads: \(y = 10 \sin\left(\frac{\pi}{15} t\right) + 30\). Now about real-world applications: Windmills are not just historical relics; they’re still found across the globe, helping to generate renewable energy. By converting kinetic energy from wind into mechanical or electrical energy, modern wind turbines play a vital role in sustainable practices, powering homes, businesses, and even entire cities. And for some common mistakes: One of the most frequent errors while formulating sine models is misidentifying the midline or the amplitude. It’s crucial to clearly separate the rotational movement’s vertical position from the motion itself. Always ensure the axis height is factored in correctly along with verifying your amplitude—that’s half the height of the total swing and should arise directly from the physical dimensions of the system!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad