Find \( \frac{d y}{d x} \) of the following functions; (i) \( x \ln (\operatorname{Sin} x)=y \) (ii) \( f(x)=e^{\operatorname{Sin} x^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \( \frac{d y}{d x} \) for the given functions, let's dive into the differentiation process! For the first function \( y = x \ln(\sin x) \): Using the product rule for differentiation, we first identify \( u = x \) and \( v = \ln(\sin x) \). The product rule states \( \frac{d}{dx}(uv) = u'v + uv' \). 1. Derivative of \( u = x \) is \( u' = 1 \). 2. To find \( v' \), start with \( v = \ln(\sin x) \). Using the chain rule, \( v' = \frac{1}{\sin x} \cdot \cos x = \cot x \). Thus, the derivative \( \frac{d y}{d x} = \frac{d}{dx}(x \ln(\sin x)) = 1 \cdot \ln(\sin x) + x \cdot \cot x \). So, \[ \frac{d y}{d x} = \ln(\sin x) + x \cot x. \] For the second function \( f(x) = e^{\sin x^2} \): Applying the chain rule here will yield the derivative. 1. Derivative of \( e^{u} \) is \( e^{u} \cdot u' \), where \( u = \sin(x^2) \). 2. First, find \( u' = \cos(x^2) \cdot 2x \) (using the chain rule again). Putting it all together, we have: \[ \frac{d f}{d x} = e^{\sin(x^2)} \cdot \cos(x^2) \cdot 2x. \] In essence: 1. \( \frac{d y}{d x} = \ln(\sin x) + x \cot x \) 2. \( \frac{d f}{d x} = 2x e^{\sin(x^2)} \cos(x^2) \)
