Pregunta
upstudy study bank question image url

Without solving for the undetermined coefficients, the correct form of a particular solution of the differential equation \( y^{\prime \prime}-16 y=x \sin x \) \( y_{p}=(A x+B) \cos x+(C x+E) \sin x \) \( y_{p}=(A x+B) \cos x \) \( A x \cos x+B \sin x \) \( y_{p}=(A x+B) \sin x \) \( y_{p}=A \cos x+B \sin x \)

Ask by Ryan Harrington. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct form of the particular solution is \( y_{p} = (Ax + B) \cos x + (Cx + E) \sin x \).

Solución

We start by noting that the homogeneous part of the differential equation   y″ – 16y = x sin x has the auxiliary equation   r² – 16 = 0, which gives the roots r = 4 and r = –4. Thus, the homogeneous solution is   y_h = C₁e^(4x) + C₂e^(–4x). Since there is no overlap between these exponential functions and the sine or cosine functions involved in the nonhomogeneous term, we can choose a particular solution in the usual form for a right‐hand side like x sin x. When the forcing function is of the form (polynomial) × sin x, a good guess is to use a particular solution of the form:   yₚ = (polynomial)× sin x + (polynomial)× cos x. Since x sin x has a first–degree polynomial (namely, x), we choose both polynomials to be of degree one. That is, the form should be   yₚ = (Ax+B) cos x + (Cx+D) sin x. Looking at the options provided, the first option is   yₚ = (Ax+B) cos x + (Cx+E) sin x. This is equivalent (with E playing the role of D) to our guessed form. Thus, without solving for the coefficients, the correct form of the particular solution is   yₚ = (Ax+B) cos x + (Cx+E) sin x.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the correct form of a particular solution for the differential equation \( y^{\prime \prime}-16 y=x \sin x \), we first look at the non-homogeneous part, which is \( x \sin x \). Given this part involves \( x \) multiplied by \( \sin x \), we will consider that in our form for the particular solution. The correct approach includes terms that account for both components, hence, \( y_{p}=(A x+B) \cos x+(C x+E) \sin x \) captures both the sine and cosine components along with the polynomial part of degree one. Now, let’s explore a related concept! The method of undetermined coefficients is all about matching your guess to the right side of the differential equation. Having \( x \sin x \) suggests polynomial multiplication will be necessary, which is why we include those \( Ax + B \) types of terms to counteract that polynomial growth. Ready for a deeper dive? You might find it fascinating how variations of this method can handle even more complex non-homogeneous equations. If you're intrigued, look into the method of variation of parameters! It’s a brilliant way to derive solutions without guessing a particular form.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad