Pregunta
upstudy study bank question image url

Find the average rate of change of the function from \( x_{1} \) to \( x_{2} \). \( f(x)=\sqrt{2 x} \) from \( x_{1}=2 \) to \( x_{2}=8 \)

Ask by Ingram Knight. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The average rate of change of the function from x = 2 to x = 8 is 1/3.

Solución

The average rate of change of a function from x₁ to x₂ is given by the formula:   Average rate of change = [f(x₂) - f(x₁)] / (x₂ - x₁) Given f(x) = √(2x), x₁ = 2, and x₂ = 8: 1. Calculate f(2):   f(2) = √(2 * 2) = √4 = 2 2. Calculate f(8):   f(8) = √(2 * 8) = √16 = 4 3. Plug these into the formula:   Average rate of change = (4 - 2) / (8 - 2) = 2 / 6 = 1/3 So, the average rate of change of the function from x = 2 to x = 8 is 1/3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the average rate of change of the function \( f(x) = \sqrt{2x} \) from \( x_1 = 2 \) to \( x_2 = 8 \), we first evaluate the function at these points: 1. \( f(2) = \sqrt{2 \cdot 2} = \sqrt{4} = 2 \) 2. \( f(8) = \sqrt{2 \cdot 8} = \sqrt{16} = 4 \) Next, we use the formula for the average rate of change: \[ \text{Average rate of change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(8) - f(2)}{8 - 2} = \frac{4 - 2}{8 - 2} = \frac{2}{6} = \frac{1}{3}. \] Thus, the average rate of change of the function from \( x = 2 \) to \( x = 8 \) is \( \frac{1}{3} \). To reinforce your understanding, remember that the average rate of change essentially gives you the slope of the secant line between two points on the graph of the function. You can think of it as the "flatness" of the curve over that interval — a handy concept for visualizing how functions behave! As for real-world applications, understanding the average rate of change can help in various fields such as physics, where you might calculate acceleration, or economics where you could analyze trends in stock prices. It's the tool that helps you decipher how things shift over time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad