Pregunta
upstudy study bank question image url

A certain forest covers an area of \( 3100 \mathrm{~km}^{2} \). Suppose that each year this area decreases by \( 9 \% \). What will the area be after 10 years? Use the calculator provided and round your answer to the nearest square kilometer.

Ask by Watkins Moran. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 10 years, the forest area will be approximately \( 1207 \mathrm{~km}^{2} \).

Solución

To find the area of the forest after 10 years, we need to calculate the area after each year and then sum up the areas for 10 years. Given: - Initial area of the forest = \( 3100 \mathrm{~km}^{2} \) - Decrease in area each year = \( 9\% \) Let's calculate the area after each year and then sum up the areas for 10 years. Calculate the value by following steps: - step0: Calculate: \(3100\left(1-0.09\right)^{10}\) - step1: Subtract the numbers: \(3100\times 0.91^{10}\) - step2: Convert the expressions: \(3100\left(\frac{91}{100}\right)^{10}\) - step3: Simplify: \(3100\times \frac{91^{10}}{100^{10}}\) - step4: Rewrite the expression: \(100\times 31\times \frac{91^{10}}{100^{10}}\) - step5: Reduce the numbers: \(31\times \frac{91^{10}}{100^{9}}\) - step6: Multiply: \(\frac{31\times 91^{10}}{100^{9}}\) The area of the forest after 10 years will be approximately \( 1207.19 \mathrm{~km}^{2} \). Therefore, after 10 years, the area of the forest will be approximately \( 1207.19 \mathrm{~km}^{2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the area of the forest after 10 years, you can use the formula for exponential decay: \[ A = A_0(1 - r)^t \] where: - \( A_0 \) is the initial area (\( 3100 \, \text{km}^2 \)), - \( r \) is the rate of decrease (9% or 0.09), - \( t \) is the number of years (10). Plugging in the values: \[ A = 3100(1 - 0.09)^{10} \] \[ A = 3100(0.91)^{10} \] \[ A = 3100(0.42241) \quad \text{(approximately)} \] \[ A \approx 1305.47 \, \text{km}^2 \] Rounding to the nearest square kilometer, the area after 10 years will be approximately \( 1305 \, \text{km}^2 \). So, the area of the forest after 10 years will be about 1305 km².

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad