Responder
The total area between the \( x \)-axis and the function \( f(x) = x^{\frac{1}{3}} - x \) on the interval \([-1,8]\) is \( \frac{83}{4} \).
Solución
We are given
\[
f(x)=x^{\frac{1}{3}}-x
\]
and we wish to find the total area between the \( x \)-axis and \( f(x) \) on the interval \([-1,8]\). Since the total area involves the absolute value of the function, we must first locate the points where \( f(x)=0 \) on the interval.
**1. Find the zeros of \( f(x) \):**
We solve
\[
x^{\frac{1}{3}}-x=0 \quad \Longrightarrow \quad x^{\frac{1}{3}}=x.
\]
Cubing both sides (using the property \(\left(x^{\frac{1}{3}}\right)^3 = x\)) we obtain
\[
x = x^3.
\]
Rearranging gives
\[
x^3-x=0 \quad \Longrightarrow \quad x(x^2-1)=0.
\]
Thus,
\[
x=0 \quad \text{or} \quad x^2-1=0 \quad \Longrightarrow \quad x=\pm1.
\]
On the interval \([-1,8]\) the zeros are \( x=-1 \), \( x=0 \), and \( x=1 \).
**2. Determine the sign of \( f(x) \) on the subintervals:**
- On \([-1,0]\): Choose \( x=-0.5 \). Then
\[
f(-0.5)=(-0.5)^{\frac{1}{3}}-(-0.5).
\]
Since the cube root of a negative number is negative, \( (-0.5)^{\frac{1}{3}} \) is negative. A quick estimate shows \( f(-0.5) \) is negative.
- On \([0,1]\): Choose \( x=0.5 \). Then
\[
f(0.5)=0.5^{\frac{1}{3}}-0.5.
\]
This value turns out to be positive.
- On \([1,8]\): For example, at \( x=2 \) or \( x=8 \), \( f(x) \) is negative.
Thus, the function is negative on \([-1,0]\) and \([1,8]\) and positive on \([0,1]\).
**3. Set up the integrals for the total (absolute) area:**
The total area \( A \) is given by
\[
A = \left| \int_{-1}^{0} f(x)\,dx \right| + \left| \int_{0}^{1} f(x)\,dx \right| + \left| \int_{1}^{8} f(x)\,dx \right|.
\]
**4. Find the antiderivative of \( f(x) \):**
We write
\[
\int f(x)\,dx = \int \left(x^{\frac{1}{3}}-x\right)dx = \int x^{\frac{1}{3}}dx-\int x\,dx.
\]
The antiderivatives are:
\[
\int x^{\frac{1}{3}}dx = \frac{3}{4}x^{\frac{4}{3}} \quad \text{and} \quad \int x\,dx = \frac{x^2}{2}.
\]
Thus, the antiderivative \( F(x) \) is
\[
F(x)=\frac{3}{4}x^{\frac{4}{3}}-\frac{x^2}{2}.
\]
**5. Evaluate the integrals on each subinterval:**
- **Interval \([-1,0]\):**
\[
I_1=\int_{-1}^{0} \left(x^{\frac{1}{3}}-x\right)dx = F(0)-F(-1).
\]
Compute:
\[
F(0)=\frac{3}{4}\cdot0^{\frac{4}{3}}-\frac{0^2}{2}=0,
\]
and note that for \( x=-1 \),
\[
(-1)^{\frac{1}{3}}=-1 \quad \text{and} \quad (-1)^{\frac{4}{3}}=\left[(-1)^{\frac{1}{3}}\right]^4= (-1)^4=1.
\]
Therefore,
\[
F(-1)=\frac{3}{4}\cdot 1-\frac{1}{2}=\frac{3}{4}-\frac{1}{2}=\frac{3-2}{4}=\frac{1}{4}.
\]
So,
\[
I_1=0-\frac{1}{4}=-\frac{1}{4}.
\]
Since \( f(x) \) is negative on this interval, the area is
\[
A_1=\left| I_1 \right|=\frac{1}{4}.
\]
- **Interval \([0,1]\):**
\[
I_2=\int_{0}^{1} \left(x^{\frac{1}{3}}-x\right)dx = F(1)-F(0).
\]
We already have \( F(0)=0 \). For \( x=1 \),
\[
1^{\frac{4}{3}}=1,
\]
so
\[
F(1)=\frac{3}{4}\cdot 1-\frac{1}{2}=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}.
\]
The area on \([0,1]\) is
\[
A_2=I_2=\frac{1}{4}.
\]
- **Interval \([1,8]\):**
\[
I_3=\int_{1}^{8} \left(x^{\frac{1}{3}}-x\right)dx = F(8)-F(1).
\]
First, compute \( F(8) \). Notice that
\[
8^{\frac{1}{3}}=2 \quad \Longrightarrow \quad 8^{\frac{4}{3}}=(8^{\frac{1}{3}})^4=2^4=16.
\]
Then,
\[
F(8)=\frac{3}{4}\cdot16-\frac{8^2}{2} = 12- \frac{64}{2} =12-32=-20.
\]
We have already found \( F(1)=\frac{1}{4} \). So,
\[
I_3=-20-\frac{1}{4}=-\frac{80}{4}-\frac{1}{4}=-\frac{81}{4}.
\]
Since \( f(x) \) is negative on \([1,8]\), the area is
\[
A_3=\left| I_3 \right|=\frac{81}{4}.
\]
**6. Sum the areas:**
The total area is
\[
A=A_1+A_2+A_3=\frac{1}{4}+\frac{1}{4}+\frac{81}{4}=\frac{1+1+81}{4}=\frac{83}{4}.
\]
Thus, the total area between the \( x \)-axis and the curve \( f(x)=x^{\frac{1}{3}}-x \) on the interval \([-1,8]\) is
\[
\boxed{\frac{83}{4}}.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución