Pregunta
upstudy study bank question image url

Find the total area between the \( x \)-axis and the function on the given interval. \[ f(x)=x^{\frac{1}{3}}-x \] \( [-1,8] \) \( [?] \)

Ask by Henry Goodwin. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total area between the \( x \)-axis and the function \( f(x) = x^{\frac{1}{3}} - x \) on the interval \([-1,8]\) is \( \frac{83}{4} \).

Solución

We are given \[ f(x)=x^{\frac{1}{3}}-x \] and we wish to find the total area between the \( x \)-axis and \( f(x) \) on the interval \([-1,8]\). Since the total area involves the absolute value of the function, we must first locate the points where \( f(x)=0 \) on the interval. **1. Find the zeros of \( f(x) \):** We solve \[ x^{\frac{1}{3}}-x=0 \quad \Longrightarrow \quad x^{\frac{1}{3}}=x. \] Cubing both sides (using the property \(\left(x^{\frac{1}{3}}\right)^3 = x\)) we obtain \[ x = x^3. \] Rearranging gives \[ x^3-x=0 \quad \Longrightarrow \quad x(x^2-1)=0. \] Thus, \[ x=0 \quad \text{or} \quad x^2-1=0 \quad \Longrightarrow \quad x=\pm1. \] On the interval \([-1,8]\) the zeros are \( x=-1 \), \( x=0 \), and \( x=1 \). **2. Determine the sign of \( f(x) \) on the subintervals:** - On \([-1,0]\): Choose \( x=-0.5 \). Then \[ f(-0.5)=(-0.5)^{\frac{1}{3}}-(-0.5). \] Since the cube root of a negative number is negative, \( (-0.5)^{\frac{1}{3}} \) is negative. A quick estimate shows \( f(-0.5) \) is negative. - On \([0,1]\): Choose \( x=0.5 \). Then \[ f(0.5)=0.5^{\frac{1}{3}}-0.5. \] This value turns out to be positive. - On \([1,8]\): For example, at \( x=2 \) or \( x=8 \), \( f(x) \) is negative. Thus, the function is negative on \([-1,0]\) and \([1,8]\) and positive on \([0,1]\). **3. Set up the integrals for the total (absolute) area:** The total area \( A \) is given by \[ A = \left| \int_{-1}^{0} f(x)\,dx \right| + \left| \int_{0}^{1} f(x)\,dx \right| + \left| \int_{1}^{8} f(x)\,dx \right|. \] **4. Find the antiderivative of \( f(x) \):** We write \[ \int f(x)\,dx = \int \left(x^{\frac{1}{3}}-x\right)dx = \int x^{\frac{1}{3}}dx-\int x\,dx. \] The antiderivatives are: \[ \int x^{\frac{1}{3}}dx = \frac{3}{4}x^{\frac{4}{3}} \quad \text{and} \quad \int x\,dx = \frac{x^2}{2}. \] Thus, the antiderivative \( F(x) \) is \[ F(x)=\frac{3}{4}x^{\frac{4}{3}}-\frac{x^2}{2}. \] **5. Evaluate the integrals on each subinterval:** - **Interval \([-1,0]\):** \[ I_1=\int_{-1}^{0} \left(x^{\frac{1}{3}}-x\right)dx = F(0)-F(-1). \] Compute: \[ F(0)=\frac{3}{4}\cdot0^{\frac{4}{3}}-\frac{0^2}{2}=0, \] and note that for \( x=-1 \), \[ (-1)^{\frac{1}{3}}=-1 \quad \text{and} \quad (-1)^{\frac{4}{3}}=\left[(-1)^{\frac{1}{3}}\right]^4= (-1)^4=1. \] Therefore, \[ F(-1)=\frac{3}{4}\cdot 1-\frac{1}{2}=\frac{3}{4}-\frac{1}{2}=\frac{3-2}{4}=\frac{1}{4}. \] So, \[ I_1=0-\frac{1}{4}=-\frac{1}{4}. \] Since \( f(x) \) is negative on this interval, the area is \[ A_1=\left| I_1 \right|=\frac{1}{4}. \] - **Interval \([0,1]\):** \[ I_2=\int_{0}^{1} \left(x^{\frac{1}{3}}-x\right)dx = F(1)-F(0). \] We already have \( F(0)=0 \). For \( x=1 \), \[ 1^{\frac{4}{3}}=1, \] so \[ F(1)=\frac{3}{4}\cdot 1-\frac{1}{2}=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}. \] The area on \([0,1]\) is \[ A_2=I_2=\frac{1}{4}. \] - **Interval \([1,8]\):** \[ I_3=\int_{1}^{8} \left(x^{\frac{1}{3}}-x\right)dx = F(8)-F(1). \] First, compute \( F(8) \). Notice that \[ 8^{\frac{1}{3}}=2 \quad \Longrightarrow \quad 8^{\frac{4}{3}}=(8^{\frac{1}{3}})^4=2^4=16. \] Then, \[ F(8)=\frac{3}{4}\cdot16-\frac{8^2}{2} = 12- \frac{64}{2} =12-32=-20. \] We have already found \( F(1)=\frac{1}{4} \). So, \[ I_3=-20-\frac{1}{4}=-\frac{80}{4}-\frac{1}{4}=-\frac{81}{4}. \] Since \( f(x) \) is negative on \([1,8]\), the area is \[ A_3=\left| I_3 \right|=\frac{81}{4}. \] **6. Sum the areas:** The total area is \[ A=A_1+A_2+A_3=\frac{1}{4}+\frac{1}{4}+\frac{81}{4}=\frac{1+1+81}{4}=\frac{83}{4}. \] Thus, the total area between the \( x \)-axis and the curve \( f(x)=x^{\frac{1}{3}}-x \) on the interval \([-1,8]\) is \[ \boxed{\frac{83}{4}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the total area between the \( x \)-axis and the function \( f(x)=x^{\frac{1}{3}}-x \) over the interval \( [-1,8] \), we first find the points where the function intersects the \( x \)-axis by solving \( f(x) = 0 \). This gives us the equation \( x^{\frac{1}{3}} = x \). After solving this, we find that the points of intersection are \( x = 0 \) and \( x = 1 \). This means the function is below the \( x \)-axis between these points. Next, we need to calculate the area from \( -1 \) to \( 8 \), which involves integrating the function: 1. Calculate the integral from \(-1\) to \(0\), 2. Calculate the integral from \(0\) to \(1\) (and take the absolute value since the function is below the \( x \)-axis), 3. Calculate the integral from \(1\) to \(8\). By evaluating these integrals, we can sum their absolute values to find the total area. So, the integral setup is: \[ \text{Area} = \int_{-1}^{0} f(x) \, dx - \int_{0}^{1} f(x) \, dx + \int_{1}^{8} f(x) \, dx \] Carrying through with the calculations (potentially using integral calculus techniques), you'll arrive at the final total area. Just dive into those integrals, and you'll uncover the hidden treasures of area lying beneath that function curve! 🏴‍☠️📜

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad