Responder
The solutions are:
1. \( x = -\frac{7}{6} \) (approximately -1.1667)
2. \( x = -\frac{7}{6} \) (approximately -1.1667)
3. \( x = \frac{3}{4} \) (0.75)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6x-7=12x\)
- step1: Move the variable to the left side:
\(6x-7-12x=0\)
- step2: Subtract the terms:
\(-6x-7=0\)
- step3: Move the constant to the right side:
\(-6x=0+7\)
- step4: Remove 0:
\(-6x=7\)
- step5: Change the signs:
\(6x=-7\)
- step6: Divide both sides:
\(\frac{6x}{6}=\frac{-7}{6}\)
- step7: Divide the numbers:
\(x=-\frac{7}{6}\)
Solve the equation \( 6x-10+3=12x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6x-10+3=12x\)
- step1: Add the numbers:
\(6x-7=12x\)
- step2: Move the variable to the left side:
\(6x-7-12x=0\)
- step3: Subtract the terms:
\(-6x-7=0\)
- step4: Move the constant to the right side:
\(-6x=0+7\)
- step5: Remove 0:
\(-6x=7\)
- step6: Change the signs:
\(6x=-7\)
- step7: Divide both sides:
\(\frac{6x}{6}=\frac{-7}{6}\)
- step8: Divide the numbers:
\(x=-\frac{7}{6}\)
Solve the equation \( \frac{4x+5}{2x+1}=\frac{16}{5} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{4x+5}{2x+1}=\frac{16}{5}\)
- step1: Find the domain:
\(\frac{4x+5}{2x+1}=\frac{16}{5},x\neq -\frac{1}{2}\)
- step2: Cross multiply:
\(\left(4x+5\right)\times 5=\left(2x+1\right)\times 16\)
- step3: Simplify the equation:
\(5\left(4x+5\right)=16\left(2x+1\right)\)
- step4: Calculate:
\(20x+25=16\left(2x+1\right)\)
- step5: Calculate:
\(20x+25=32x+16\)
- step6: Move the expression to the left side:
\(20x+25-\left(32x+16\right)=0\)
- step7: Calculate:
\(-12x+9=0\)
- step8: Move the constant to the right side:
\(-12x=0-9\)
- step9: Remove 0:
\(-12x=-9\)
- step10: Change the signs:
\(12x=9\)
- step11: Divide both sides:
\(\frac{12x}{12}=\frac{9}{12}\)
- step12: Divide the numbers:
\(x=\frac{3}{4}\)
- step13: Check if the solution is in the defined range:
\(x=\frac{3}{4},x\neq -\frac{1}{2}\)
- step14: Find the intersection:
\(x=\frac{3}{4}\)
Let's solve the given equations step by step.
1. **First Equation:**
\[
6x - 10 + 3 = 12x
\]
Simplifying this:
\[
6x - 7 = 12x
\]
Rearranging gives:
\[
-7 = 12x - 6x \implies -7 = 6x \implies x = -\frac{7}{6}
\]
Thus, the solution for the first equation is:
\[
x = -\frac{7}{6} \quad \text{or approximately } -1.1667
\]
2. **Second Equation:**
\[
6x - 7 = 12x
\]
Rearranging gives:
\[
-7 = 12x - 6x \implies -7 = 6x \implies x = -\frac{7}{6}
\]
The solution for the second equation is the same:
\[
x = -\frac{7}{6} \quad \text{or approximately } -1.1667
\]
3. **Third Equation:**
\[
\frac{4x + 5}{2x + 1} = \frac{16}{5}
\]
Cross-multiplying gives:
\[
5(4x + 5) = 16(2x + 1)
\]
Expanding both sides:
\[
20x + 25 = 32x + 16
\]
Rearranging gives:
\[
25 - 16 = 32x - 20x \implies 9 = 12x \implies x = \frac{3}{4}
\]
Thus, the solution for the third equation is:
\[
x = \frac{3}{4} \quad \text{or } 0.75
\]
### Summary of Solutions:
- For the first equation: \( x = -\frac{7}{6} \)
- For the second equation: \( x = -\frac{7}{6} \)
- For the third equation: \( x = \frac{3}{4} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución