Pregunta
upstudy study bank question image url

Sketch the graph of the linear function, then give its domain and range. \( f(x)=5 x+1 \)

Ask by Zimmerman Hilton. in the United States
Nov 15,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of \( f(x) = 5x + 1 \) is a straight line with a slope of 5 and y-intercept at (0, 1). The domain and range are both \( (-\infty, \infty) \).

Solución

To sketch the graph of the linear function \( f(x) = 5x + 1 \), we can follow these steps: 1. **Identify the slope and y-intercept**: - The slope (m) is 5, which means for every unit increase in \( x \), \( f(x) \) increases by 5 units. - The y-intercept (b) is 1, which means the graph crosses the y-axis at the point (0, 1). 2. **Plot the y-intercept**: - Start by plotting the point (0, 1) on the graph. 3. **Use the slope to find another point**: - From (0, 1), move up 5 units (because of the slope) and 1 unit to the right to find another point. This gives us the point (1, 6). 4. **Draw the line**: - Draw a straight line through the points (0, 1) and (1, 6). Since this is a linear function, the line will continue infinitely in both directions. ### Domain and Range - **Domain**: The domain of a linear function is all real numbers, since you can input any real number for \( x \). Therefore, the domain is: \[ \text{Domain: } (-\infty, \infty) \] - **Range**: Similarly, the range of a linear function is also all real numbers, as the output \( f(x) \) can take any real value. Therefore, the range is: \[ \text{Range: } (-\infty, \infty) \] ### Summary - **Function**: \( f(x) = 5x + 1 \) - **Domain**: \( (-\infty, \infty) \) - **Range**: \( (-\infty, \infty) \) You can visualize the graph as a straight line with a steep upward slope, crossing the y-axis at (0, 1).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To sketch the graph of the linear function \( f(x) = 5x + 1 \), start by plotting the y-intercept at \( (0, 1) \). Then, use the slope of \( 5 \) (which means you rise 5 units for every 1 unit you run to the right) to find another point, like \( (1, 6) \). Connect these points with a straight line, and extend it in both directions. The domain of this linear function is all real numbers, or \( (-\infty, \infty) \), because you can plug any value of \( x \) into the function. The range is also all real numbers, or \( (-\infty, \infty) \), since the line extends infinitely upwards and downwards on both sides.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad