Solve the equation. \[ 6-6 \sin \theta=4 \cos ^{2} \theta \] A. The solution set is \( \{ \) the solution in the interval \( 0 \leq \theta<2 \pi \) ? Select the correct choice and fill in any answer boxes in your choice below. (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any to separate answers as needed.) B. There is no solution.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
First, let's simplify the equation \( 6 - 6 \sin \theta = 4 \cos^2 \theta \). We can rewrite \( \cos^2 \theta \) using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 6 - 6 \sin \theta = 4(1 - \sin^2 \theta) \] Expanding this, we have: \[ 6 - 6 \sin \theta = 4 - 4 \sin^2 \theta \] Rearranging the equation gives us: \[ 4 \sin^2 \theta - 6 \sin \theta + 2 = 0 \] Now we can use the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -6 \), and \( c = 2 \): \[ \sin \theta = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} \] \[ = \frac{6 \pm \sqrt{36 - 32}}{8} \] \[ = \frac{6 \pm \sqrt{4}}{8} \] \[ = \frac{6 \pm 2}{8} \] This gives us two potential solutions for \( \sin \theta \): 1. \( \sin \theta = \frac{8}{8} = 1 \) 2. \( \sin \theta = \frac{4}{8} = \frac{1}{2} \) Now, let's find the angles corresponding to these sine values: For \( \sin \theta = 1 \): \[ \theta = \frac{\pi}{2} \] For \( \sin \theta = \frac{1}{2} \): \[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \] Therefore, in the interval \( 0 \leq \theta < 2\pi \), the complete solution set is: \(\left\{ \frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}\)
