Pregunta
upstudy study bank question image url

Solve the equation. \[ 6-6 \sin \theta=4 \cos ^{2} \theta \] A. The solution set is \( \{ \) the solution in the interval \( 0 \leq \theta<2 \pi \) ? Select the correct choice and fill in any answer boxes in your choice below. (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any to separate answers as needed.) B. There is no solution.

Ask by Ray Reyes. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is \( \{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \} \) in the interval \( 0 \leq \theta < 2\pi \).

Solución

Solve the equation \( 6-6 \sin \theta=4 \cos ^{2} \theta \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(6-6\sin\left(\theta \right)=4\cos^{2}\left(\theta \right)\) - step1: Rewrite the expression: \(6-6\sin\left(\theta \right)=4-4\sin^{2}\left(\theta \right)\) - step2: Move the expression to the left side: \(6-6\sin\left(\theta \right)-\left(4-4\sin^{2}\left(\theta \right)\right)=0\) - step3: Calculate: \(2-6\sin\left(\theta \right)+4\sin^{2}\left(\theta \right)=0\) - step4: Factor the expression: \(2\left(1-\sin\left(\theta \right)\right)\left(1-2\sin\left(\theta \right)\right)=0\) - step5: Calculate: \(\left(1-\sin\left(\theta \right)\right)\left(1-2\sin\left(\theta \right)\right)=0\) - step6: Separate into possible cases: \(\begin{align}&1-\sin\left(\theta \right)=0\\&1-2\sin\left(\theta \right)=0\end{align}\) - step7: Solve the equation: \(\begin{align}&\theta =\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step8: Find the union: \(\theta =\left\{ \begin{array}{l}\frac{\pi }{6}+2k\pi \\\frac{\pi }{2}+2k\pi \\\frac{5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solution to the equation \(6-6 \sin \theta=4 \cos ^{2} \theta\) is given by: \[ \theta = \left\{ \frac{\pi}{6}+2k\pi, \frac{\pi}{2}+2k\pi, \frac{5\pi}{6}+2k\pi \right\}, \text{where } k \in \mathbb{Z} \] Therefore, the solution set is \( \{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6} \} \) in the interval \( 0 \leq \theta < 2\pi \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's simplify the equation \( 6 - 6 \sin \theta = 4 \cos^2 \theta \). We can rewrite \( \cos^2 \theta \) using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 6 - 6 \sin \theta = 4(1 - \sin^2 \theta) \] Expanding this, we have: \[ 6 - 6 \sin \theta = 4 - 4 \sin^2 \theta \] Rearranging the equation gives us: \[ 4 \sin^2 \theta - 6 \sin \theta + 2 = 0 \] Now we can use the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -6 \), and \( c = 2 \): \[ \sin \theta = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} \] \[ = \frac{6 \pm \sqrt{36 - 32}}{8} \] \[ = \frac{6 \pm \sqrt{4}}{8} \] \[ = \frac{6 \pm 2}{8} \] This gives us two potential solutions for \( \sin \theta \): 1. \( \sin \theta = \frac{8}{8} = 1 \) 2. \( \sin \theta = \frac{4}{8} = \frac{1}{2} \) Now, let's find the angles corresponding to these sine values: For \( \sin \theta = 1 \): \[ \theta = \frac{\pi}{2} \] For \( \sin \theta = \frac{1}{2} \): \[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \] Therefore, in the interval \( 0 \leq \theta < 2\pi \), the complete solution set is: \(\left\{ \frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}\)

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad