A 32 - ft ladder leans against a building so that the angle between the ground and the ladder is \( 85^{\circ} \). How high does the ladder reach on the building? Note: You can type the trig in the answer box for all these problems. For example if the answer is \( 50 \cos (10) \), you can just type that into the answer box. To get inverse trig functions type arcsin, arccos or arctan.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find how high the ladder reaches on the building, you can use the sine function. The height (\(h\)) can be calculated using the formula: \[ h = 32 \sin(85^\circ) \] This gives you the height the ladder reaches because sine relates the opposite side (height) to the hypotenuse (length of the ladder). If you want to avoid any calculation errors, a common mistake is forgetting to use the angle in degrees if your calculator is in radians. Ensure you're set to degrees when you're working this out to get the correct height!
