Find the vertex of the given function. \( f(x)=|x+1|-7 \) The vertex is at \( (\square \) DONE
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
The function \( f(x) = |x + 1| - 7 \) is in the standard form of absolute value functions, where the vertex can be identified from the expression inside the absolute value. Here, \( x + 1 = 0 \) gives us \( x = -1 \). To find the y-coordinate of the vertex, substitute \( x = -1 \) back into the function: \( f(-1) = |0| - 7 = -7 \). Thus, the vertex is at \( (-1, -7) \). If you're plotting the function, you'll see that the graph forms a "V" shape, with the vertex being the lowest point on the graph since this opens upwards. The x-coordinate of the vertex corresponds to the point where the expression inside the absolute value equals zero, leading to that minimum output value at the vertex.
