Find the domain of the rational function \( R(x)=\frac{x+3}{x-4} \). \( (-\infty,-3] \cup(4, \infty) \) \( (-3,4) \) \( (4, \infty) \) \( (-\infty, 4) \cup(4, \infty) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To determine the domain of the rational function \( R(x) = \frac{x+3}{x-4} \), we need to identify values of \( x \) that do not make the denominator zero. The denominator \( x - 4 = 0 \) when \( x = 4 \). Thus, the function is undefined at \( x = 4 \). The domain consists of all real numbers except for 4, leading us to the conclusion that the domain is \( (-\infty, 4) \cup (4, \infty) \). Notably, rational functions are generally defined everywhere except at points where the denominator equals zero. Hence, when dealing with any rational expression, always check for restrictions that could render portions of the domain invalid! Remember, if the denominator has any roots, those are the values to exclude.
