6. Which of the following values of \( x \) are part of the solution set for the inequality \( -4(x+6)-2 x<8.2 x+10 \) ? Select THREE answers. \( \begin{array}{ll}\text { A. } 3 & -4 x-24-2 x<8.2 x+10 \\ \text { B. } 0 & -6 x-24<8.2 x+10 \\ \text { C. }-2 & -8.2 \\ \text { D. }-4 & -14.2 x-24<10 \\ \text { E. }-7 & -14.2 x<34\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
First, let's simplify the original inequality step by step: Starting from: \[-4(x + 6) - 2x < 8.2x + 10\] Distributing the -4: \[-4x - 24 - 2x < 8.2x + 10\] Combining like terms on the left: \[-6x - 24 < 8.2x + 10\] Adding \(6x\) to both sides: \[-24 < 14.2x + 10\] Subtracting 10 from both sides: \[-34 < 14.2x\] Dividing by \(14.2\): \[-\frac{34}{14.2} < x\] which simplifies to approximately \[-2.39 < x\] or \[x > -2.39\] Now we can evaluate the options: A. \(3\) — Valid, as \(3 > -2.39\) B. \(0\) — Valid, as \(0 > -2.39\) C. \(-2\) — Valid, as \(-2 > -2.39\) D. \(-4\) — Not valid, as \(-4 < -2.39\) E. \(-7\) — Not valid, as \(-7 < -2.39\) The valid answers are \(3\), \(0\), and \(-2\).
