Pregunta
upstudy study bank question image url

\begin{tabular}{l} A system of equations is graphed on the coordinate plane. \\ \( \begin{array}{l}2 y=3 x-1 \\ 4 y=6 x-2 \\ \text { Select the number of solutions for the system of equations from } \\ \text { the drop-down menu. } \\ \text { Choose. } \\ \text { Choose. } \\ \text { no solution } \\ \text { one solution } \\ \text { intintely many solutions }\end{array} \) \\ \hline\end{tabular}

Ask by Sherman Hardy. in the United States
Jan 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are infinitely many solutions to the system of equations.

Solución

The given system of equations is: \[ \begin{cases} 2y = 3x - 1 \\ 4y = 6x - 2 \end{cases} \] Let's simplify both equations to slope-intercept form (\( y = mx + b \)): 1. **First Equation:** \[ 2y = 3x - 1 \\ y = \frac{3}{2}x - \frac{1}{2} \] 2. **Second Equation:** \[ 4y = 6x - 2 \\ y = \frac{6x - 2}{4} \\ y = \frac{3}{2}x - \frac{1}{2} \] After simplifying, both equations are identical: \[ y = \frac{3}{2}x - \frac{1}{2} \] Since both equations represent the **same line**, every point on the line satisfies both equations. Therefore, there are **infinitely many solutions** to this system of equations. **Answer:** Infinitely many solutions

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When analyzing the two equations given, you'll notice they can be simplified. The first equation, \(2y = 3x - 1\), can be rewritten as \(y = \frac{3}{2}x - \frac{1}{2}\). The second equation, \(4y = 6x - 2\), simplifies to \(y = \frac{3}{2}x - \frac{1}{2}\) as well. Since both equations represent the same line, every point on this line is a solution, leading to infinitely many solutions! This scenario is akin to two hikers marking the same path on a map; there's not just one way to reach the peak—embrace the journey of possibilities! Keep in mind that when both equations yield the same slope and y-intercept, they'll always overlap in every direction. It's like walking on parallel lines that eventually meet at every point along their shared path!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad