Pregunta
upstudy study bank question image url

2.) \( \begin{array}{l}x+2 y=5 \\ 3 x+4 y=6\end{array} \)

Ask by Ingram Mitchell. in Colombia
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La solución es \( x = -4 \) y \( y = 4.5 \).

Solución

Solve the system of equations \( x+2y=5;3x+4y=6 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+2y=5\\3x+4y=6\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=5-2y\\3x+4y=6\end{array}\right.\) - step2: Substitute the value of \(x:\) \(3\left(5-2y\right)+4y=6\) - step3: Simplify: \(15-2y=6\) - step4: Move the constant to the right side: \(-2y=6-15\) - step5: Subtract the numbers: \(-2y=-9\) - step6: Change the signs: \(2y=9\) - step7: Divide both sides: \(\frac{2y}{2}=\frac{9}{2}\) - step8: Divide the numbers: \(y=\frac{9}{2}\) - step9: Substitute the value of \(y:\) \(x=5-2\times \frac{9}{2}\) - step10: Calculate: \(x=-4\) - step11: Calculate: \(\left\{ \begin{array}{l}x=-4\\y=\frac{9}{2}\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=-4\\y=\frac{9}{2}\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(-4,\frac{9}{2}\right)\) La solución de las ecuaciones dadas es \( (x,y) = (-4,4.5) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this system of equations, we can use the substitution method or the elimination method. Let’s use the elimination method for a bit of clarity. Start with the equations given: 1) \( x + 2y = 5 \) 2) \( 3x + 4y = 6 \) First, multiply the first equation by 3 to align the coefficients of \(x\): \( 3(x + 2y) = 3(5) \) This gives us \( 3x + 6y = 15 \). Now we have: 1) \( 3x + 6y = 15 \) 2) \( 3x + 4y = 6 \) Next, subtract the second equation from the first: \( (3x + 6y) - (3x + 4y) = 15 - 6\) This simplifies to \( 2y = 9 \), so \( y = 4.5 \). Now substitute \( y = 4.5 \) back into the first equation: \( x + 2(4.5) = 5 \) Which simplifies to \( x + 9 = 5 \), giving us \( x = -4 \). Thus, the solution to the system of equations is \( x = -4 \) and \( y = 4.5 \). In history, systems of equations have been used since ancient times! The Babylonians were solving linear equations around 2000 BC. Fast forward to the 19th century when mathematicians like Augustin-Louis Cauchy and Karl Friedrich Gauss developed methods for finding solutions to these systems. Today, they are foundational in fields such as economics, engineering, and computer science. In the real world, systems of equations pop up everywhere! From calculating costs and revenues in business to determining the intersection of two paths in logistics, knowing how to solve these can save you time and money. For example, businesses often use these equations to model cost functions and predict profits, allowing for effective planning and resource allocation. So next time you're crunching numbers, remember the power of algebra at work!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad