Pregunta
Use the steps to determine the exact value of \( \sin (-135)^{\circ} \). Identify the reference angle, \( \theta \). \( \theta=45 \) CompLETE Find the value of the function for \( \theta \). \( \sin \left(45^{\circ}\right)= \) ? \( 1 / 2 \) \( \sqrt{2} / 2 \) \( \sqrt{3} / 2 \) DONEI
Ask by Rogers Bird. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The exact value of \( \sin(-135^\circ) \) is \( -\frac{\sqrt{2}}{2} \).
Solución
To determine the exact value of \( \sin(-135^\circ) \), we will follow the steps outlined:
1. **Identify the reference angle**:
- The angle \( -135^\circ \) is in the fourth quadrant when considering the unit circle. To find the reference angle, we can convert it to a positive angle by adding \( 360^\circ \):
\[
-135^\circ + 360^\circ = 225^\circ
\]
- The reference angle \( \theta \) is calculated as:
\[
\theta = 225^\circ - 180^\circ = 45^\circ
\]
2. **Find the value of the function for \( \theta \)**:
- We need to find \( \sin(45^\circ) \). The sine of \( 45^\circ \) is a well-known value:
\[
\sin(45^\circ) = \frac{\sqrt{2}}{2}
\]
3. **Determine the sign of the sine function**:
- Since \( -135^\circ \) is in the third quadrant (where sine is negative), we have:
\[
\sin(-135^\circ) = -\sin(45^\circ) = -\frac{\sqrt{2}}{2}
\]
Thus, the exact value of \( \sin(-135^\circ) \) is:
\[
\sin(-135^\circ) = -\frac{\sqrt{2}}{2}
\]
To summarize:
- Reference angle \( \theta = 45^\circ \)
- \( \sin(45^\circ) = \frac{\sqrt{2}}{2} \)
- Therefore, \( \sin(-135^\circ) = -\frac{\sqrt{2}}{2} \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To determine \( \sin (-135)^{\circ} \), we first find the reference angle. Since \(-135^{\circ}\) is in the third quadrant, the reference angle is indeed \( \theta = 45^{\circ} \). Next up, let's calculate the value of \( \sin(45^{\circ}) \). The sine of \( 45^{\circ} \) is known to be \( \frac{\sqrt{2}}{2} \), which is the value we'll use. Since sine is negative in the third quadrant, we conclude that \( \sin(-135^{\circ}) = -\frac{\sqrt{2}}{2} \). So there you have it!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium