Pregunta
upstudy study bank question image url

Simplify the following. (1.) \( \frac{\text { I } 1-x^{2}+8 x}{4 x^{2}} \) I (2. \( \frac{x^{2}-12 x+27}{4 x^{2}-12 x} \) (3) \( \frac{6 x^{3}-2 x^{2}}{-3 x-9} \times \frac{x^{2}-9}{2-6 x} \) (3-4

Ask by Gross Schneider. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Simplify the expressions as follows: 1. \( \frac{1 - x^{2} + 8x}{4x^{2}} = -\frac{1}{4} + \frac{8x + 1}{4x^{2}} \) 2. \( \frac{x^{2} - 12x + 27}{4x^{2} - 12x} = \frac{x - 9}{4x} \) 3. \( \frac{6x^{3} - 2x^{2}}{-3x - 9} \times \frac{x^{2} - 9}{2 - 6x} = \frac{x^{3} - 3x^{2}}{3} \)

Solución

Calculate or simplify the expression \( (1-x^{2}+8x)/(4x^{2}) \). Divide the polynomials by following steps: - step0: Using Long Division to Divide Polynomials: \(\frac{\left(1-x^{2}+8x\right)}{\left(4x^{2}\right)}\) - step1: Calculate: \(-\frac{1}{4}+\frac{8x+1}{4x^{2}}\) Calculate or simplify the expression \( (x^{2}-12x+27)/(4x^{2}-12x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{2}-12x+27\right)}{\left(4x^{2}-12x\right)}\) - step1: Remove the parentheses: \(\frac{x^{2}-12x+27}{4x^{2}-12x}\) - step2: Factor the expression: \(\frac{\left(x-3\right)\left(x-9\right)}{4x\left(x-3\right)}\) - step3: Reduce the fraction: \(\frac{x-9}{4x}\) Calculate or simplify the expression \( (6x^{3}-2x^{2})/(-3x-9) \times (x^{2}-9)/(2-6x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(6x^{3}-2x^{2}\right)}{\left(-3x-9\right)}\times \left(x^{2}-9\right)}{\left(2-6x\right)}\) - step1: Remove the parentheses: \(\frac{\frac{6x^{3}-2x^{2}}{-3x-9}\times \left(x^{2}-9\right)}{2-6x}\) - step2: Rewrite the fraction: \(\frac{-\frac{6x^{3}-2x^{2}}{3x+9}\times \left(x^{2}-9\right)}{2-6x}\) - step3: Multiply the terms: \(\frac{-\frac{\left(6x^{3}-2x^{2}\right)\left(x-3\right)}{3}}{2-6x}\) - step4: Multiply by the reciprocal: \(-\frac{\left(6x^{3}-2x^{2}\right)\left(x-3\right)}{3}\times \frac{1}{2-6x}\) - step5: Rewrite the expression: \(-\frac{-x^{2}\left(-6x+2\right)\left(x-3\right)}{3}\times \frac{1}{-6x+2}\) - step6: Reduce the fraction: \(-\frac{-x^{2}\left(x-3\right)}{3}\times 1\) - step7: Multiply the terms: \(\frac{x^{2}\left(x-3\right)}{3}\) - step8: Multiply the terms: \(\frac{x^{3}-3x^{2}}{3}\) The simplified expressions are: 1. \( \frac{1-x^{2}+8x}{4x^{2}} = -\frac{1}{4} + \frac{8x+1}{4x^{2}} \) 2. \( \frac{x^{2}-12x+27}{4x^{2}-12x} = \frac{x-9}{4x} \) 3. \( \frac{6x^{3}-2x^{2}}{-3x-9} \times \frac{x^{2}-9}{2-6x} = \frac{x^{3}-3x^{2}}{3} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify your expressions, let’s break them down! (1.) For \( \frac{1 - x^2 + 8x}{4x^2} \): Rearranging gives us \( \frac{-x^2 + 8x + 1}{4x^2} \). The numerator can be rewritten as \( -(x^2 - 8x - 1) \), and you may try to factor or complete the square if necessary. The resulting simplified form is \( \frac{-1(x^2 - 8x - 1)}{4x^2} \). (2.) For \( \frac{x^{2}-12x+27}{4x^{2}-12x} \): This can be factored. The numerator factors as \( (x-3)(x-9) \), while the denominator can be factored as \( 4(x - 3)(x - 1) \). Thus, simplifying gives us \( \frac{x - 9}{4(x - 1)} \) provided \( x \neq 3 \). (3.) For \( \frac{6x^3 - 2x^2}{-3x - 9} \times \frac{x^2 - 9}{2 - 6x} \): The first term can be factored to \( \frac{2x^2(3x - 1)}{-3(x + 3)} \), and the second term factors to \( \frac{(x - 3)(x + 3)}{-(6x - 2)} \). Multiplying these and simplifying will give you a clearer form as you cancel out the common factors. If you need further help with specific parts, just let me know!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad