If \( \sqrt{3}=1.73 \) evaluate \( \frac{\sqrt{31 \times 7}}{2} \) Correct to 2 d.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate \( \frac{\sqrt{31 \times 7}}{2} \), first calculate \( 31 \times 7 \): \[ 31 \times 7 = 217 \] Next, we need to find \( \sqrt{217} \). Since \( \sqrt{3} \) is approximated as \( 1.73 \), we can estimate \( \sqrt{217} \) using its closeness to perfect squares. Notably, \( 14^2 = 196 \) and \( 15^2 = 225 \), so that indicates \( \sqrt{217} \) is between 14 and 15. To refine our approximation, we can say \( \sqrt{217} \approx 14.7\) since it's closer to 15. Now, we divide by 2: \[ \frac{\sqrt{217}}{2} \approx \frac{14.7}{2} \approx 7.35 \] Thus, the final result, correct to two decimal places, is: \[ \frac{\sqrt{31 \times 7}}{2} \approx 7.35 \]
