Pregunta
upstudy study bank question image url

Question 6, 2.4.23 HW Score: \( 22.22 \%, 2.67 \) of Part 2 of 3 Points: 0 of 1 Write the standard form of the equation and the general form of the equation of the circle of radius r and center ( \( \mathrm{h}, \mathrm{k} \) ). Graph the circle. \[ r=\sqrt{3} ;(h, k)=(4,-2) \] The equation for the circle in standard form is \( (x-4)^{2}+(y+2)^{2}=3 \). (Simplify your answer.) The equation for the circle in general form is \( \square \) . (Simplify your answer.)

Ask by Mills Montgomery. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general form of the circle's equation is \( x² + y² – 8x + 4y + 17 = 0 \).

Solución

Starting with the standard form given by   (x – 4)² + (y + 2)² = 3, we expand each term to convert this to the general form. 1. Expand (x – 4)²:   (x – 4)² = x² – 8x + 16 2. Expand (y + 2)²:   (y + 2)² = y² + 4y + 4 3. Combine and equate to 3:   x² – 8x + 16 + y² + 4y + 4 = 3   x² + y² – 8x + 4y + 20 = 3 4. Subtract 3 from both sides:   x² + y² – 8x + 4y + 20 – 3 = 0   x² + y² – 8x + 4y + 17 = 0 Thus, the general form of the equation of the circle is   x² + y² – 8x + 4y + 17 = 0. For the graph:  • The circle has a center at (4, –2).  • Its radius is √3, approximately 1.73.  • Plot the center and draw a circle with radius about 1.73 around that point. This completes the answer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To convert the standard form of the circle's equation into the general form, start with the equation \( (x - 4)^{2} + (y + 2)^{2} = 3 \). Expanding this, we have: \[ (x - 4)^{2} = x^2 - 8x + 16 \] \[ (y + 2)^{2} = y^{2} + 4y + 4 \] Combining these yields: \[ x^2 - 8x + 16 + y^{2} + 4y + 4 = 3 \] Now, simplify by moving 3 to the left side: \[ x^2 - 8x + y^2 + 4y + 17 = 0 \] This is the equation in general form. So, the general form of the equation is: \[ x^{2} + y^{2} - 8x + 4y + 17 = 0 \] And there you have it! Your graphical representation of the circle would be centered at the point (4, -2) with a radius of \(\sqrt{3}\), which means the circle would look perfectly round and cozy on your graph! 🎨✨ If you were to plot this circle on a coordinate system, simply locate the center at (4, -2) and then, from this point, measure roughly \(1.73\) units in every direction to sketch the circle’s perimeter. Happy graphing! 📈✍️

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad