Simplify. \begin{tabular}{l}\( \left(-x^{3} y^{3} z^{2}\right)^{2}\left(2 x^{3} z^{2}\right)^{3} \) \\ \( \boxed{[]} \) \\ \( \square \) \\ \( \square \) \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To simplify the expression \( \left(-x^{3} y^{3} z^{2}\right)^{2}\left(2 x^{3} z^{2}\right)^{3} \), we can follow these steps: First, simplify each component separately. 1. For the first part: \[ \left(-x^{3} y^{3} z^{2}\right)^{2} = (-1)^{2} (x^{3})^{2} (y^{3})^{2} (z^{2})^{2} = 1 \cdot x^{6} y^{6} z^{4} = x^{6} y^{6} z^{4} \] 2. For the second part: \[ \left(2 x^{3} z^{2}\right)^{3} = 2^{3} (x^{3})^{3} (z^{2})^{3} = 8 x^{9} z^{6} \] Now, combine the two parts: \[ x^{6} y^{6} z^{4} \cdot 8 x^{9} z^{6} \] Multiply the coefficients and the variables together: \[ = 8 x^{6} x^{9} y^{6} z^{4} z^{6} = 8 x^{15} y^{6} z^{10} \] Thus, the simplified expression is: \[ \boxed{8 x^{15} y^{6} z^{10}} \]
