Pregunta
upstudy study bank question image url

Which point would not be a solution to the system of linear inequalities shown below? \[ y>3 x-7 \quad y \geq-x-1 \] Answer \( (-2,9) \)

Ask by Frank Gordon. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point \((-2, 9)\) satisfies both inequalities, so it is a solution to the system. To find a point that does not satisfy the system, consider another point, such as \((0, 0)\): 1. \(0 > 3(0) - 7\) simplifies to \(0 > -7\), which is true. 2. \(0 \geq -0 - 1\) simplifies to \(0 \geq -1\), which is also true. Thus, \((0, 0)\) is also a solution. Therefore, \((-2, 9)\) is a valid solution to the system of inequalities.

Solución

To determine whether the point \((-2, 9)\) is a solution to the system of linear inequalities given by: 1. \( y > 3x - 7 \) 2. \( y \geq -x - 1 \) we will substitute \(x = -2\) and \(y = 9\) into each inequality and check if the point satisfies both. ### Step 1: Check the first inequality Substituting into the first inequality: \[ y > 3x - 7 \] Substituting \(x = -2\) and \(y = 9\): \[ 9 > 3(-2) - 7 \] Calculating the right side: \[ 9 > -6 - 7 \] \[ 9 > -13 \] This inequality is true. ### Step 2: Check the second inequality Now, substituting into the second inequality: \[ y \geq -x - 1 \] Substituting \(x = -2\) and \(y = 9\): \[ 9 \geq -(-2) - 1 \] Calculating the right side: \[ 9 \geq 2 - 1 \] \[ 9 \geq 1 \] This inequality is also true. ### Conclusion Since the point \((-2, 9)\) satisfies both inequalities, it is indeed a solution to the system of linear inequalities. To find a point that does not satisfy the system, we can check other points or analyze the inequalities further. Would you like to check another specific point or find a point that does not satisfy the inequalities?

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if the point \((-2, 9)\) is a solution, we can plug it into the inequalities. For the first inequality \(y > 3x - 7\), substituting gives us \(9 > 3(-2) - 7\) or \(9 > -6 - 7\), which simplifies to \(9 > -13\) (true!). But for the second inequality \(y \geq -x - 1\), we have \(9 \geq -(-2) - 1\) or \(9 \geq 2 - 1\), simplifying to \(9 \geq 1\) (also true!). So, surprisingly, \((-2, 9)\) is indeed a solution! However, if we had to identify a point that wouldn't work, let’s try \((-2, 4)\). Checking the first inequality gives \(4 > 3(-2) - 7\) which simplifies to \(4 > -13\) (true), but when checking the second inequality, we see \(4 \geq -(-2) - 1\) leads to \(4 \geq 1\) (true as well). So, let's test another point: \( (-2, 2) \). Plugging into the first gives \(2 > -13\) (true) and the second, \(2 \geq 1\) (true too). Therefore, finding the right non-solution requires creativity or perhaps a point outside the evaluated range!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad