Pregunta
upstudy study bank question image url

Find the exact value, if any, of the following composite function. Do not use a calculator. \( \cos ^{-1}\left[\cos \left(\frac{7 \pi}{10}\right)\right] \) Select the correct choice below and, if necessary, fill in the answer box within your choice. A. \( \cos ^{-1}\left[\cos \left(\frac{7 \pi}{10}\right)\right]= \) (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Use integers or fractions for any numbers in the expression.) B. It is not defined.

Ask by Collins Craig. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \cos^{-1}\left[\cos \left(\frac{7 \pi}{10}\right)\right]= \frac{7\pi}{10} \)

Solución

To find the value of \( \cos^{-1}\left[\cos\left(\frac{7\pi}{10}\right)\right] \), we need to understand the properties of the inverse cosine function. The function \( \cos^{-1}(x) \) returns values in the range \( [0, \pi] \). The cosine function is periodic and symmetric, which means that for angles outside of this range, we may need to adjust the angle to find the corresponding value within the range of the inverse function. 1. First, we calculate \( \cos\left(\frac{7\pi}{10}\right) \). The angle \( \frac{7\pi}{10} \) is in the second quadrant, where cosine is negative. 2. The cosine function is symmetric about \( \pi \). Therefore, we can find an equivalent angle in the first quadrant: \[ \frac{7\pi}{10} = \pi - \frac{3\pi}{10} \] This means: \[ \cos\left(\frac{7\pi}{10}\right) = -\cos\left(\frac{3\pi}{10}\right) \] 3. Now, we apply the inverse cosine function: \[ \cos^{-1}\left[\cos\left(\frac{7\pi}{10}\right)\right] \] Since \( \frac{7\pi}{10} \) is in the second quadrant, we need to find the equivalent angle in the range \( [0, \pi] \). The angle \( \frac{7\pi}{10} \) itself is already in this range. Thus, we have: \[ \cos^{-1}\left[\cos\left(\frac{7\pi}{10}\right)\right] = \frac{7\pi}{10} \] Therefore, the exact value is: \[ \boxed{\frac{7\pi}{10}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate \( \cos ^{-1}\left[\cos \left(\frac{7 \pi}{10}\right)\right] \), we first need to recognize that the function \( \cos^{-1}(x) \), also known as the arccosine function, returns values in the range \( [0, \pi] \). The angle \( \frac{7 \pi}{10} \) is approximately \( 1.57 \times 7 = 3.49 \) radians, which falls within this range. However, the value of \( \frac{7 \pi}{10} \) can be expressed in a more familiar angle. Since \( \cos(x) \) is periodic and symmetric, \( \cos \left(\frac{7 \pi}{10}\right) \) does yield a valid output, specifically the corresponding angle in the range of the arccos function remains \( \frac{7 \pi}{10} \). Therefore, the exact value is: A. \( \cos^{-1}\left[\cos\left(\frac{7 \pi}{10}\right)\right] = \frac{7\pi}{10} \)

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad