Pregunta
upstudy study bank question image url

Let \( \theta \) be an angle in standard position. Name the quadrant in which \( \theta \) lies. \[ \begin{array}{l}\tan \theta>0, \sin \theta<0 \\ \text { The angle } \theta \text { lies in which quadrant? } \\ \text { in } \\ \text { in }\end{array} \]

Ask by Pope Barber. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The angle \( \theta \) lies in the third quadrant.

Solución

To determine the quadrant in which the angle \( \theta \) lies, we can analyze the given conditions: 1. \( \tan \theta > 0 \): The tangent function is positive in the first and third quadrants. 2. \( \sin \theta < 0 \): The sine function is negative in the third and fourth quadrants. Now, we need to find the quadrant where both conditions are satisfied simultaneously. - The first quadrant has \( \tan \theta > 0 \) and \( \sin \theta > 0 \) (not applicable here). - The second quadrant has \( \tan \theta < 0 \) and \( \sin \theta > 0 \) (not applicable here). - The third quadrant has \( \tan \theta > 0 \) and \( \sin \theta < 0 \) (this satisfies both conditions). - The fourth quadrant has \( \tan \theta < 0 \) and \( \sin \theta < 0 \) (not applicable here). Since the only quadrant that satisfies both conditions is the third quadrant, we conclude that: \[ \text{The angle } \theta \text{ lies in the third quadrant.} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The conditions given are that \(\tan \theta > 0\) and \(\sin \theta < 0\). The tangent function is positive in the first and third quadrants, while the sine function is negative in the third and fourth quadrants. The only quadrant that satisfies both conditions is the third quadrant. So, the angle \(\theta\) lies in the third quadrant.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad