Pregunta

14. A card is drawn from a deck of 52 cards and a die is tossed. What is the probability of: a. Drawing a heart and tossing a 1 ? b. Drawing a heart or tossing a 1 ? c. Drawing a face card and tossing an even number? d. Drawing a face card or tossing an even number?

Ask by Vargas Rojas. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. Probability of drawing a heart and tossing a 1: 1/24 b. Probability of drawing a heart or tossing a 1: 3/8 c. Probability of drawing a face card and tossing an even number: 3/26 d. Probability of drawing a face card or tossing an even number: 8/13

Solución

We have two independent actions: drawing a card from a standard deck of 52 cards and tossing a die. We'll denote the following events: • H: drawing a heart • F: drawing a face card (Jack, Queen, or King) • T₁: tossing a 1 • E: tossing an even number (2, 4, or 6) Now, let’s solve each part step by step. ────────────────────────────── a. Drawing a heart and tossing a 1 • Probability of drawing a heart, P(H) = 13/52 = 1/4 • Probability of tossing a 1, P(T₁) = 1/6 Since the two events are independent, the probability is:   P(H and T₁) = P(H) × P(T₁) = (1/4) × (1/6) = 1/24 ────────────────────────────── b. Drawing a heart or tossing a 1 For the union of two events (H or T₁), we use the formula:   P(H or T₁) = P(H) + P(T₁) − P(H and T₁) Substitute the known values:   P(H or T₁) = 1/4 + 1/6 − 1/24 Convert to a common denominator (24):   1/4 = 6/24, 1/6 = 4/24, and P(H and T₁) = 1/24 Thus:   P(H or T₁) = 6/24 + 4/24 − 1/24 = (6 + 4 − 1)/24 = 9/24 = 3/8 ────────────────────────────── c. Drawing a face card and tossing an even number • There are 12 face cards in a 52-card deck, so P(F) = 12/52 = 3/13 • There are 3 even numbers on a die (2, 4, 6), so P(E) = 3/6 = 1/2 Since these are independent events, we have:   P(F and E) = P(F) × P(E) = (3/13) × (1/2) = 3/26 ────────────────────────────── d. Drawing a face card or tossing an even number Using the union formula:   P(F or E) = P(F) + P(E) − P(F and E) Substitute the probabilities:   P(F or E) = 3/13 + 1/2 − 3/26 Again, convert to a common denominator (26):   3/13 = 6/26, 1/2 = 13/26 Thus:   P(F or E) = 6/26 + 13/26 − 3/26 = (6 + 13 − 3)/26 = 16/26 = 8/13 ────────────────────────────── Summary of Answers: a. 1/24 b. 3/8 c. 3/26 d. 8/13

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

When a card is drawn from a standard 52-card deck, there are 13 hearts. The probability of drawing a heart is 13/52, which simplifies to 1/4. For tossing a die, there is one face showing a 1 out of 6 possible outcomes, giving us a probability of 1/6. Therefore, the probability of both events occurring (drawing a heart and tossing a 1) is (1/4) * (1/6) = 1/24. When considering the probability of drawing a heart or tossing a 1, we use the principle of addition. Since these two events are independent, the probability is P(Heart) + P(1) - P(Heart and 1) = (1/4) + (1/6) - (1/24) = 7/12. For part c, there are 12 face cards total (3 face cards in each of the 4 suits). The chance of drawing a face card is thus 12/52, or 3/13. Tossing an even number (2, 4, or 6) on a die gives us 3 outcomes, resulting in a probability of 3/6 or 1/2. Therefore, the probability of both events happening (drawing a face card and tossing an even number) is (3/13) * (1/2) = 3/26. Finally, for part d, we again apply the addition principle. The probability of drawing a face card is 3/13 and the probability of tossing an even number is 1/2, so we calculate P(Face card) + P(Even number) - P(Face card and Even number). First, we need to find the probability of both events occurring. Since there are 6 face cards (Jacks and Kings, but no Queens are even, so only Jacks and Kings are relevant) out of 12, the combination yields 6/52 or 3/26. Thus, the probability is (3/13) + (1/2) - (3/26) = 33/52 or simplified to 0.635.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad