Pregunta
upstudy study bank question image url

There are 10 people at a meeting and there are 4 different door prizes to give out. How many ways can we select 4 people to receive the door prizes?

Ask by Flynn Murphy. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are 210 ways to select 4 people out of 10 to receive the door prizes.

Solución

To find the number of ways to select 4 people out of 10 to receive the door prizes, we can use the combination formula. The combination formula is given by: \[ C(n, k) = \frac{n!}{k!(n-k)!} \] Where: - \( n \) is the total number of items to choose from (in this case, 10 people) - \( k \) is the number of items to choose (in this case, 4 people) - \( n! \) represents the factorial of \( n \), which is the product of all positive integers up to \( n \) Substitute the values into the formula: \[ C(10, 4) = \frac{10!}{4!(10-4)!} \] Now, we can calculate the number of ways to select 4 people out of 10 to receive the door prizes. Simplify the expression by following steps: - step0: Solution: \(\frac{10!}{\left(4!\times \left(10-4\right)!\right)}\) - step1: Remove the parentheses: \(\frac{10!}{4!\times \left(10-4\right)!}\) - step2: Subtract the numbers: \(\frac{10!}{4!\times 6!}\) - step3: Expand the expression: \(\frac{10\times 9\times 8\times 7\times 6\times 5\times 4!}{4!\times 6!}\) - step4: Simplify: \(\frac{10\times 9\times 8\times 7\times 6\times 5}{6!}\) - step5: Multiply: \(\frac{151200}{6!}\) - step6: Calculate the value: \(\frac{151200}{720}\) - step7: Reduce the fraction: \(210\) There are 210 ways to select 4 people out of 10 to receive the door prizes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When it comes to selecting people for door prizes, we can use the concept of combinations since the order in which we choose the winners does not matter. The formula for combinations is given by \( C(n, r) = \frac{n!}{r!(n-r)!} \), where \( n \) is the total number of people and \( r \) is the number of prize winners we want. In this case, we have \( n = 10 \) and \( r = 4 \). Plugging these numbers into the formula gives us: \[ C(10, 4) = \frac{10!}{4!(10-4)!} = \frac{10!}{4! \times 6!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210 \] Therefore, there are 210 different ways to select 4 individuals out of 10 to receive the door prizes! Imagine all the excitement as the names are drawn; 210 different combinations mean a myriad of ways the grand prize winners could change the vibe of the meeting!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad