Pregunta
upstudy study bank question image url

Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function \( y=x^{2} \) and show all stages. Be sure to identify at least three key points. Find the domain and the range of the function. \( f(x)=2(x+2)^{2}-1 \) Which transformations are needed to graph the function \( f(x)=2(x+2)^{2}-1 \) ? Choose the correct answer below. A. une graph of \( y=x^{2} \) should be horizontally shifted to the left by 2 1 units. The graph of \( y=x^{2} \) should be horizontally shifted to the left by 2 B. units, vertically stretched by a factor of 2 , and shifted vertically down by a factor of 2 , and shifted vertically up by by 1 units. The graph of \( y=x^{2} \) should be horizontally shifted to the right by 2 c. units, vertically compressed by a factor of 2 , and shifted vertically down by 1 units. The graph of \( y=x^{2} \) should be horizontally shifted to the right by 2 D. units, vertically compressed by a factor of 2 , and shifted vertically up by 1 units.

Ask by Ryan Donnelly. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph \( f(x) = 2(x + 2)^2 - 1 \), start with the base function \( y = x^2 \) and apply the following transformations in order: 1. **Horizontal Shift**: Move the graph 2 units to the **left**. 2. **Vertical Stretch**: Stretch the graph vertically by a factor of **2**. 3. **Vertical Shift**: Move the graph **down** by 1 unit. **Key Points**: - **Vertex**: (–2, –1) - **Additional Points**: - (–1, 1) after shifts and stretches - (–3, 1) after shifts and stretches **Domain**: All real numbers, (–∞, ∞) **Range**: [–1, ∞) The correct transformation description is: A. The graph of \( y = x^2 \) should be horizontally shifted to the left by 2 units, vertically stretched by a factor of 2, and shifted vertically down by 1 unit.

Solución

We start with the base function y = x² and then perform the following transformations in order: 1. Horizontal Shift: Replace x with (x + 2). This shifts the graph 2 units to the left. (The vertex moves from (0, 0) to (–2, 0).) 2. Vertical Stretch: Multiply the function by 2, which stretches it vertically by a factor of 2. 3. Vertical Shift: Subtract 1 from the function, shifting it downward by 1 unit. (Now the vertex is at (–2, –1).) Key points on the final graph include: • Vertex: (–2, –1) • A point originally at (1, 1) on y = x² moves as follows:   - After the left shift: (–1, 1)   - After the vertical stretch: (–1, 2)   - After the vertical shift: (–1, 1) • Another point originally at (–1, 1) on y = x² moves to:   - After the left shift: (–3, 1)   - After the vertical stretch: (–3, 2)   - After the vertical shift: (–3, 1) The domain of f(x) = 2(x + 2)² – 1 is all real numbers, (–∞, ∞), and the range is [–1, ∞) (since the minimum value is achieved at the vertex). Of the answer choices given, the correct transformation description is: A. The graph of y=x² should be horizontally shifted to the left by 2 units, vertically stretched by a factor of 2, and shifted vertically down by 1 unit. Thus, the correct answer is option A.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the function \( f(x) = 2(x + 2)^{2} - 1 \), we start with the basic function \( y = x^{2} \). The first transformation involves a horizontal shift to the left by 2 units due to the \( (x + 2) \) term. Then, we apply a vertical stretch by a factor of 2, making the graph steeper. Finally, we shift the graph down by 1 unit because of the \(-1\). The three key points after these transformations are the vertex at \((-2, -1)\), the point \((-1, 1)\), and the point \((-3, 1)\). The domain of the function is all real numbers, \( \mathbb{R} \), as there are no restrictions on the values \( x \) can take. The range is determined by the vertex being the minimum point here, giving us \([-1, +\infty)\) since this is a parabola opening upwards.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad