Pregunta
upstudy study bank question image url

This spinner is spun and a die is rolled at the same time. Make a table to show the possible outcomes. Find the probability that: a the spinner and the die show the same score b the score on the spinner is

Ask by Turnbull Mills. in Iraq
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

| Spinner \ Die | 1 | 2 | 3 | 4 | 5 | 6 | |---------------|---|---|---|---|---|---| | **1** | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | | **2** | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) | | **3** | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) | | **4** | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) | - **Probability that spinner and die show the same score:** 1/6 - **Probability that spinner shows 2:** 1/4

Solución

To solve this problem, we need to first identify the possible outcomes of both the spinner and the die. ### Step 1: Identify the outcomes 1. **Spinner Outcomes**: Let's assume the spinner has 4 equal sections numbered 1 to 4. 2. **Die Outcomes**: A standard die has 6 faces numbered from 1 to 6. ### Step 2: Create a table of possible outcomes We can create a table where the rows represent the outcomes of the spinner and the columns represent the outcomes of the die. The table will look like this: | Spinner \ Die | 1 | 2 | 3 | 4 | 5 | 6 | |---------------|---|---|---|---|---|---| | **1** | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | | **2** | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) | | **3** | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) | | **4** | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) | ### Step 3: Calculate the total number of outcomes The total number of outcomes is the product of the number of outcomes from the spinner and the die: \[ \text{Total Outcomes} = \text{Spinner Outcomes} \times \text{Die Outcomes} = 4 \times 6 = 24 \] ### Step 4: Find the probability that the spinner and the die show the same score The outcomes where the spinner and the die show the same score are: - (1,1) - (2,2) - (3,3) - (4,4) There are 4 favorable outcomes. The probability \( P \) that the spinner and the die show the same score is given by: \[ P(\text{same score}) = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} = \frac{4}{24} = \frac{1}{6} \] ### Step 5: Find the probability that the score on the spinner is a specific value If we need to find the probability that the score on the spinner is, for example, 2, we can calculate it as follows: - The number of favorable outcomes for the spinner showing 2 is 6 (since it can pair with any of the die outcomes). Thus, the probability \( P \) that the score on the spinner is 2 is: \[ P(\text{spinner = 2}) = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} = \frac{6}{24} = \frac{1}{4} \] ### Summary of Results - The probability that the spinner and the die show the same score is \( \frac{1}{6} \). - The probability that the score on the spinner is 2 is \( \frac{1}{4} \). If you have a specific value for the spinner score you want to calculate, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To create a table of possible outcomes from spinning a spinner and rolling a die, let's assume the spinner has sections numbered 1 to 6, matching the die faces. The table would look something like this: | Spinner | Die 1 | Die 2 | Die 3 | Die 4 | Die 5 | Die 6 | |---------|-------|-------|-------|-------|-------|-------| | **1** | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | | **2** | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) | | **3** | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) | | **4** | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) | | **5** | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) | | **6** | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) | Now, to find the probabilities: a) The spinner and the die show the same score: There are 6 matching pairs (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6). The total number of outcomes is 6 (spinner options) x 6 (die options) = 36. Probability = 6/36 = 1/6. b) The score on the spinner is unspecified here, so it would depend on the specific number you want to check. For example, if you want the probability of the spinner landing on a 3: There are 6 outcomes where the spinner shows 3 (3,1), (3,2), (3,3), (3,4), (3,5), (3,6). Probability = 6/36 = 1/6. Now, if you're eager to delve deeper, here are two fun facts: In ancient times, spinners were used as decision-making tools, often crafted with care to ensure fairness. Just imagine a medieval scholar relying on a spinner to determine his next book to read or subject to teach! If you're strategizing on games involving dice and spinners, always remember: it's not just about chance! Understanding the patterns and probabilities significantly enhances your winning potential. So, the next time the spinner starts turning, you’ll know how to place your bets wiser!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad