Responder
The simplified expression is \( \cos x \).
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\tan\left(540^{\circ}+x\right)\)
- step1: Rewrite the expression:
\(\tan\left(x\right)\)
Calculate or simplify the expression \( \frac{1}{2} \sin 2 x \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{1}{2}\sin\left(2x\right)\)
Calculate or simplify the expression \( \frac{1}{\cos ^{2} x}-\tan ^{2} x \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{1}{\cos^{2}\left(x\right)}-\tan^{2}\left(x\right)\)
- step1: Reduce fractions to a common denominator:
\(\frac{1}{\cos^{2}\left(x\right)}-\frac{\tan^{2}\left(x\right)\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\)
- step2: Transform the expression:
\(\frac{1-\tan^{2}\left(x\right)\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\)
- step3: Transform the expression:
\(-\frac{\left(\tan\left(x\right)\cos\left(x\right)+1\right)\left(\tan\left(x\right)\cos\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\)
- step4: Transform the expression:
\(-\frac{\left(\sin\left(x\right)+1\right)\left(\sin\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\)
- step5: Transform the expression:
\(-\left(-1\right)\)
- step6: Calculate:
\(1\)
Calculate or simplify the expression \( \sqrt{\frac{\frac{1}{2}\sin(2x)}{\tan(x)(1)}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{\frac{\frac{1}{2}\sin\left(2x\right)}{\tan\left(x\right)\times 1}}\)
- step1: Multiply:
\(\sqrt{\frac{\frac{1}{2}\sin\left(2x\right)}{\tan\left(x\right)}}\)
- step2: Divide the terms:
\(\sqrt{\frac{\sin\left(2x\right)}{2\tan\left(x\right)}}\)
- step3: Use the properties of radicals:
\(\frac{\sqrt{\sin\left(2x\right)}}{\sqrt{2\tan\left(x\right)}}\)
- step4: Transform the expression:
\(\frac{\sqrt{\sin\left(2x\right)}}{\frac{\sqrt{2\sin\left(x\right)}}{\sqrt{\cos\left(x\right)}}}\)
- step5: Multiply by the reciprocal:
\(\sqrt{\sin\left(2x\right)}\times \frac{\sqrt{\cos\left(x\right)}}{\sqrt{2\sin\left(x\right)}}\)
- step6: Multiply the terms:
\(\frac{\sqrt{\sin\left(2x\right)}\times \sqrt{\cos\left(x\right)}}{\sqrt{2\sin\left(x\right)}}\)
- step7: Multiply the terms:
\(\frac{\sqrt{\sin\left(2x\right)\cos\left(x\right)}}{\sqrt{2\sin\left(x\right)}}\)
- step8: Transform the expression:
\(\frac{\sqrt{2\sin\left(x\right)}\times \cos\left(x\right)}{\sqrt{2\sin\left(x\right)}}\)
- step9: Reduce the fraction:
\(\cos\left(x\right)\)
To simplify the expression
\[
\sqrt{\frac{\frac{1}{2} \sin 2 x}{\tan \left(540^{\circ}+x\right)\left(\frac{1}{\cos ^{2} x}-\tan ^{2} x\right)}}
\]
we follow these steps:
1. **Simplify \(\frac{1}{2} \sin 2x\)**:
- This remains as \(\frac{1}{2} \sin 2x\).
2. **Simplify \(\tan(540^{\circ} + x)\)**:
- Since \(\tan\) has a period of \(180^{\circ}\), we can reduce \(540^{\circ}\) to \(540^{\circ} - 3 \times 180^{\circ} = 540^{\circ} - 540^{\circ} = 0^{\circ}\).
- Thus, \(\tan(540^{\circ} + x) = \tan(x)\).
3. **Simplify \(\frac{1}{\cos^2 x} - \tan^2 x\)**:
- Using the identity \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\), we have:
\[
\frac{1}{\cos^2 x} - \tan^2 x = \frac{1}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x} = \frac{1 - \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} = 1.
\]
4. **Substituting back into the original expression**:
- Now we substitute these simplifications back into the expression:
\[
\sqrt{\frac{\frac{1}{2} \sin 2x}{\tan(x) \cdot 1}} = \sqrt{\frac{\frac{1}{2} \sin 2x}{\tan(x)}}.
\]
5. **Using the identity \(\sin 2x = 2 \sin x \cos x\)**:
- We can rewrite \(\sin 2x\) as \(2 \sin x \cos x\):
\[
\sqrt{\frac{\frac{1}{2} \cdot 2 \sin x \cos x}{\tan(x)}} = \sqrt{\frac{\sin x \cos x}{\tan(x)}}.
\]
6. **Substituting \(\tan(x) = \frac{\sin x}{\cos x}\)**:
- Thus, we have:
\[
\sqrt{\frac{\sin x \cos x}{\frac{\sin x}{\cos x}}} = \sqrt{\cos^2 x} = \cos x.
\]
Therefore, the simplified expression is
\[
\cos x.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución