Select your answer Which choice completes the identity? \( \tan ^{2} x= \) \( \begin{array}{l}\sec ^{2} x-1 \\ \csc ^{2} x+1 \\ 2 \sec ^{2} x\end{array} \) \( 1+\cot ^{2} x-1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
The identity \( \tan^{2} x = \sec^{2} x - 1 \) is a fundamental trigonometric identity that relates the tangent and secant functions. This relationship comes from the Pythagorean identity \( \sin^{2} x + \cos^{2} x = 1 \). By dividing the entire identity by \( \cos^{2} x \), we derive \( \tan^{2} x = \frac{\sin^{2} x}{\cos^{2} x} \) and \( \sec^{2} x = \frac{1}{\cos^{2} x} \), allowing us to show that \( \tan^{2} x + 1 = \sec^{2} x \). In real-world applications, understanding the relationship between these trigonometric identities can help in various fields such as physics and engineering, particularly in areas involving wave motion and oscillations. For example, when analyzing the angles of a structure or the trajectory of a projectile, recognizing these identities can simplify calculations and lead to more efficient designs or solutions.
