Pregunta
upstudy study bank question image url

Using bisection method two times on the equation

We get the end points
a. .
ob. .
c. .
d. None.

Ask by Schneider Joseph. in Egypt
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct interval after two bisection method iterations is .

Solución

To solve the equation using the bisection method, we need to find the interval where the function changes sign.
Given that the end points are and , we can use the bisection method to find the root of the equation.
Let’s denote the function as .
  1. Check the sign of and :
  2. Determine the sign of and :
    • If and have opposite signs, then the root lies between and .
  3. Calculate the midpoint and check the sign of :
    • If has the same sign as , then the root lies in the interval .
    • If has the opposite sign as , then the root lies in the interval .
Let’s calculate the values of and to determine the sign of the function at these points.
Calculate or simplify the expression .
The values of and are approximately 0.785388 and -0.186223, respectively.
Since and have opposite signs, the root of the equation lies between and .
Now, we need to find the midpoint and check the sign of to determine the interval where the root lies.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Add the numbers:
  • step3: Convert the expressions:
  • step4: Multiply by the reciprocal:
  • step5: Multiply the fractions:
  • step6: Multiply:

    Calculate or simplify the expression .
    The value of is approximately 0.307473.
Since has the same sign as , the root of the equation lies in the interval .
Therefore, the correct answer is:
a.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The bisection method is a robust numerical technique that continually narrows down the interval in which a root of a function exists. In the case of the equation , starting with suitable initial endpoints is crucial. From the outputs given, it seems that the intervals suggest the method is being applied correctly. The intervals given provide a growing sense of where the function transitions from positive to negative, indicating a root.
When you apply the bisection method, always ensure that the chosen endpoints contain a sign change. This means verifying that and yield opposite signs. It’s common for novice users to mistakenly choose endpoints that don’t reflect a sign change, which can lead to incorrect conclusions. Always double-check those calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad