Pregunta
upstudy study bank question image url

How much money will there be in an account at the end of 6 years if \( \$ 14000 \) is deposited at \( 3 \% \) interest compounded quarterly? (Assume no withdrawals are made.) \( \begin{array}{l}\text { The amount after } 6 \text { years will be } \$ \square \text {. } \\ \text { (Round to the nearest cent as needed.) }\end{array} \)

Ask by Floyd Jimenez. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The amount in the account after 6 years will be approximately $16749.79.

Solución

To calculate the amount of money in the account at the end of 6 years with a deposit of $14000 at an interest rate of 3% compounded quarterly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money in the account after \( t \) years - \( P \) is the principal amount (initial deposit) - \( r \) is the annual interest rate (in decimal form) - \( n \) is the number of times the interest is compounded per year - \( t \) is the number of years Given: - \( P = \$14000 \) - \( r = 3\% = 0.03 \) - \( n = 4 \) (compounded quarterly) - \( t = 6 \) years Substitute these values into the formula and calculate the amount of money in the account after 6 years. Calculate the value by following steps: - step0: Calculate: \(14000\left(1+\frac{0.03}{4}\right)^{4\times 6}\) - step1: Divide the terms: \(14000\left(1+\frac{3}{400}\right)^{4\times 6}\) - step2: Add the numbers: \(14000\left(\frac{403}{400}\right)^{4\times 6}\) - step3: Multiply the numbers: \(14000\left(\frac{403}{400}\right)^{24}\) - step4: Simplify: \(14000\times \frac{403^{24}}{400^{24}}\) - step5: Rewrite the expression: \(400\times 35\times \frac{403^{24}}{400^{24}}\) - step6: Reduce the numbers: \(35\times \frac{403^{24}}{400^{23}}\) - step7: Rewrite the expression: \(5\times 7\times \frac{403^{24}}{400^{23}}\) - step8: Rewrite the expression: \(5\times 7\times \frac{403^{24}}{25^{23}\times 16^{23}}\) - step9: Rewrite the expression: \(5\times 7\times \frac{403^{24}}{5^{46}\times 16^{23}}\) - step10: Reduce the numbers: \(7\times \frac{403^{24}}{5^{45}\times 16^{23}}\) - step11: Multiply the fractions: \(\frac{7\times 403^{24}}{5^{45}\times 16^{23}}\) The amount of money in the account at the end of 6 years will be approximately $16749.79.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the amount in the account after 6 years with quarterly compounding interest, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount (\$14,000). - \(r\) is the annual interest rate (decimal) (0.03 for 3%). - \(n\) is the number of times that interest is compounded per year (4 for quarterly). - \(t\) is the number of years the money is invested (6 years). Plugging in the values: \[ A = 14000 \left(1 + \frac{0.03}{4}\right)^{4 \times 6} \] Calculating: \[ A = 14000 \left(1 + 0.0075\right)^{24} = 14000 \left(1.0075\right)^{24} \] \[ A \approx 14000 \times 1.1936 \approx 16705.22 \] So the amount after 6 years will be \$16,705.22. Now, for some extra interesting info: Before banks started offering interest rates, people relied on barter systems and the sharing of resources. The evolution into modern banking introduced the concepts of savings and investment as we know them today, allowing people to grow wealth over time. In real-world applications, understanding how compound interest works can significantly boost financial literacy. It helps people make informed decisions about savings accounts, retirement plans, and investments. Being savvy about how interest compounds can lead to greater financial independence down the line!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad