Pregunta
upstudy study bank question image url

Statement: Suppose that \( f(z)=u(x, y)+i v(x, y) \) and \( f^{\prime}\left(z_{0}\right) \) exists at a point \( z_{0}=x_{0}+i y_{0} \) then the first order partial derivatives of \( u \) and \( v \) must exist at \( \left(x_{0}, y_{0}\right) \) and they must satisfy the Cauchy- Riemann equation \( u_{x}=v_{y}, u_{y}=-v_{x} \). Also, \( f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x} \) where these partial derivatives are to be

Ask by Herrera Rose. in Nepal
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

If a complex function's derivative exists at a point, its real and imaginary parts must have partial derivatives at that point, and these derivatives must satisfy the Cauchy-Riemann equations. The derivative of the function is the sum of the partial derivatives of its real and imaginary parts.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

The Cauchy-Riemann equations form a cornerstone of complex analysis, linking real and imaginary parts of a complex function to establish conditions for differentiability in the complex plane. Dating back to mathematicians like Augustin-Louis Cauchy and Bernhard Riemann, these equations demonstrate that if a function is analytic at a point, its derivatives not only exist but are also closely interrelated. This elegant interplay allows for the powerful application of complex functions in various fields, including engineering and physics. In practical terms, if you’re computationally evaluating complex functions, always check for the Cauchy-Riemann equations after establishing that the first-order partial derivatives exist. A common mistake is overlooking the requirement that these equations must hold for differentiability. Remember, violating these equations means the function isn’t differentiable at that point, which can lead to erroneous conclusions in calculations or when applying theorems like the Residue Theorem for evaluating integrals. So, keep an eye out for those derivatives working together!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad