Responder
The solutions are \(x = -3, y = 4\) and \(x = 0.5, y = 2.25\).
Solución
Solve the system of equations \( x+2y=5;2y^{2}-xy-4x^{2}=8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+2y=5\\2y^{2}-xy-4x^{2}=8\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=5-2y\\2y^{2}-xy-4x^{2}=8\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2y^{2}-\left(5-2y\right)y-4\left(5-2y\right)^{2}=8\)
- step3: Simplify:
\(-12y^{2}+75y-100=8\)
- step4: Move the expression to the left side:
\(-12y^{2}+75y-100-8=0\)
- step5: Subtract the numbers:
\(-12y^{2}+75y-108=0\)
- step6: Factor the expression:
\(-3\left(y-4\right)\left(4y-9\right)=0\)
- step7: Divide the terms:
\(\left(y-4\right)\left(4y-9\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&y-4=0\\&4y-9=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&y=4\\&y=\frac{9}{4}\end{align}\)
- step10: Calculate:
\(y=4\cup y=\frac{9}{4}\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=5-2y\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=5-2y\\y=\frac{9}{4}\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-3\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1}{2}\\y=\frac{9}{4}\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-3\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1}{2}\\y=\frac{9}{4}\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-3,4\right)\cup \left(x,y\right) = \left(\frac{1}{2},\frac{9}{4}\right)\)
The solutions to the system of equations \(x+2y=5\) and \(2y^{2}-xy-4x^{2}=8\) are:
1. \(x = -3, y = 4\)
2. \(x = 0.5, y = 2.25\)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución