Pregunta
upstudy study bank question image url

d) \( x^{2}-7 x+6 \) f) \( x^{2}-2 \frac{1}{5} x+\frac{2}{5} \) h) \( 2 x^{2}-11 x+5 \)

Ask by Patel Cook. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: - \( x = 1 \) and \( x = 6 \) for \( d) \) - \( x = \frac{1}{5} \) and \( x = 2 \) for \( f) \) - \( x = \frac{1}{2} \) and \( x = 5 \) for \( h) \)

Solución

Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}-7x+6=0\) - step1: Factor the expression: \(\left(x-6\right)\left(x-1\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-6=0\\&x-1=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=6\\&x=1\end{align}\) - step4: Rewrite: \(x_{1}=1,x_{2}=6\) Solve the equation \( 2 x^{2}-11 x+5=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2x^{2}-11x+5=0\) - step1: Factor the expression: \(\left(x-5\right)\left(2x-1\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-5=0\\&2x-1=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=5\\&x=\frac{1}{2}\end{align}\) - step4: Rewrite: \(x_{1}=\frac{1}{2},x_{2}=5\) Solve the equation \( x^{2}-2 \frac{1}{5} x+\frac{2}{5}=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}-2\frac{1}{5}\times x+\frac{2}{5}=0\) - step1: Convert the expressions: \(x^{2}-\frac{11}{5}x+\frac{2}{5}=0\) - step2: Factor the expression: \(\frac{1}{5}\left(x-2\right)\left(5x-1\right)=0\) - step3: Divide the terms: \(\left(x-2\right)\left(5x-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&x-2=0\\&5x-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=2\\&x=\frac{1}{5}\end{align}\) - step6: Rewrite: \(x_{1}=\frac{1}{5},x_{2}=2\) Let's solve each of the quadratic equations step by step. ### d) \( x^{2}-7x+6 = 0 \) To solve this equation, we can factor it: \[ x^{2}-7x+6 = (x-1)(x-6) = 0 \] Setting each factor to zero gives us: 1. \( x - 1 = 0 \) → \( x = 1 \) 2. \( x - 6 = 0 \) → \( x = 6 \) Thus, the solutions are: \[ x_{1} = 1, \quad x_{2} = 6 \] ### f) \( x^{2}-2\frac{1}{5}x+\frac{2}{5} = 0 \) First, let's convert \( 2\frac{1}{5} \) to an improper fraction: \[ 2\frac{1}{5} = \frac{11}{5} \] Now, the equation becomes: \[ x^{2} - \frac{11}{5}x + \frac{2}{5} = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - \( a = 1 \) - \( b = -\frac{11}{5} \) - \( c = \frac{2}{5} \) Calculating the discriminant: \[ b^2 - 4ac = \left(-\frac{11}{5}\right)^2 - 4 \cdot 1 \cdot \frac{2}{5} = \frac{121}{25} - \frac{8}{5} = \frac{121}{25} - \frac{40}{25} = \frac{81}{25} \] Now, substituting into the quadratic formula: \[ x = \frac{\frac{11}{5} \pm \sqrt{\frac{81}{25}}}{2} = \frac{\frac{11}{5} \pm \frac{9}{5}}{2} \] This gives us two solutions: 1. \( x = \frac{20/5}{2} = 2 \) 2. \( x = \frac{2/5}{2} = \frac{1}{5} \) Thus, the solutions are: \[ x_{1} = \frac{1}{5}, \quad x_{2} = 2 \] ### h) \( 2x^{2}-11x+5 = 0 \) Using the quadratic formula again: - \( a = 2 \) - \( b = -11 \) - \( c = 5 \) Calculating the discriminant: \[ b^2 - 4ac = (-11)^2 - 4 \cdot 2 \cdot 5 = 121 - 40 = 81 \] Now substituting into the quadratic formula: \[ x = \frac{11 \pm \sqrt{81}}{4} = \frac{11 \pm 9}{4} \] This gives us two solutions: 1. \( x = \frac{20}{4} = 5 \) 2. \( x = \frac{2}{4} = \frac{1}{2} \) Thus, the solutions are: \[ x_{1} = \frac{1}{2}, \quad x_{2} = 5 \] ### Summary of Solutions - For \( d) \): \( x_{1} = 1, \quad x_{2} = 6 \) - For \( f) \): \( x_{1} = \frac{1}{5}, \quad x_{2} = 2 \) - For \( h) \): \( x_{1} = \frac{1}{2}, \quad x_{2} = 5 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's shake things up a bit and delve into some fascinating tidbits! Did you know that the quadratic formula, which helps solve equations like these, has been around since ancient civilizations? The Babylonians were actually solving quadratic equations around 2000 BC! They may not have had fancy variables like \(x\), but their methods laid the groundwork for what we use today. Now, onto practical applications! Quadratic equations aren't just for math classrooms—they pop up in real life, too! From optimizing profit margins in business to calculating the trajectory of a basketball during a shot, these equations help us analyze situations and make informed decisions. So next time you see a parabola, remember it has a real-world purpose beyond homework!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad