Pregunta
Suppose that the polynomial function \( f \) is defined as follows. \[ f(x)=3 x^{3}(x-6)^{2}(x+12)(x-11)^{3} \] List each zero of \( f \) according to its multiplicity in the categories below. If there is more than one answer for a multiplicity, separate them with commas. If there is zero(s) of multiplicity one: zero(s) of multiplicity two: zero(s) of multiplicity three:
Ask by Vaughn John. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Zero(s) of multiplicity one: -12
Zero(s) of multiplicity two: 6
Zero(s) of multiplicity three: 0, 11
Solución
The zeros and their respective multiplicities are as follows:
• Zero(s) of multiplicity one: -12
• Zero(s) of multiplicity two: 6
• Zero(s) of multiplicity three: 0, 11
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
The zeros of the polynomial function \( f(x)=3 x^{3}(x-6)^{2}(x+12)(x-11)^{3} \) can be listed according to their multiplicities as follows: zero(s) of multiplicity one: \(-12\) zero(s) of multiplicity two: \(6\) zero(s) of multiplicity three: \(0, 11\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium